Available in English
36/A-NUWSP/Oktober/2023
Air merupakan kebutuhan mendasar yang harus dipenuhi karena manusia sangat bergantung pada air. Manusia membutuhkan air untuk berbagai keperluan, seperti minum, memasak, mandi, mencuci, dll. Untuk memenuhi kebutuhan harian, air dapat diakses, salah satunya melalui Sistem Penyediaan Air Minum Jaringan Perpipaan (SPAM JP). SPAM JP adalah satu kesatuan sarana dan prasarana penyediaan air minum yang disalurkan kepada pelanggan melalui sistem perpipaan. SPAM JP sebagaimana dimaksud meliputi: unit air baku, unit air produksi, unit distribusi, dan unit pelayanan (Kamulyan, 2018). Air minum juga dapat diakses tanpa melalui sistem perpipaan, atau yang biasa disebut dengan Sistem Penyediaan Air Minum Bukan Jaringan Perpipaan (SPAM BJP). SPAM BJP dapat berupa sumur dangkal/sumur gali, sumur pompa/bor, bak penampungan air hujan, terminal air, dan bangunan penangkap mata air (Kementerian PUPR, 2016). Pelajari seputar SPAM JP dan SPAM BJP selengkapnya di sini.
Gambar 1. (a) SPAM JP (Cirebon Raya, 2021) dan (b) SPAM BJP (Kompas dalam Hanifah, 2021)
Riset Kesehatan Dasar (Riskesdas) Kementerian Kesehatan pada tahun 2018 mengungkapkan bahwa sumur gali terlindung, jaringan perpipaan (air ledeng), dan sumur pompa/bor, merupakan jenis SPAM yang paling banyak digunakan oleh rumah tangga di Indonesia untuk mengakses air minum (Zora dkk., 2022). Jika diakumulasi, penggunaan SPAM BJP berupa sumur gali terlindung dan sumur pompa/bor memang lebih banyak dibandingkan dengan SPAM JP. Namun saat ini, penggunaan sumur memiliki kerentanan yang cukup tinggi karena sangat bergantung pada kondisi lingkungan di sekitar sumur dan kondisi cuaca/iklim (Ardyanto, 2020; Caritra, 2021; Rizqo, 2018). Di sisi lain, SPAM JP diyakini dapat menjamin kualitas, kuantitas, dan kontinuitas air minum (Kementerian PUPR, 2016; Pamsimas, 2020). Menurut Bappenas (2023), air minum yang bersumber dari SPAM JP memiliki persentase pemenuhan standar kualitas air yang lebih tinggi dibandingkan dengan SPAM BJP. Hal ini dapat terjadi karena SPAM JP umumnya dilengkapi dengan unit-unit pengolahan yang mampu mengolah air sehingga mencapai kualitas yang diharapkan (Ardyanto, 2020). Selain itu, kelengkapan SPAM JP berupa reservoir juga mampu mendukung tercapainya kuantitas dan kontinuitas dalam penyediaan air minum (Baliilu, 2020). Semakin besar kapasitas reservoir yang disediakan, semakin besar pula dukungan kuantitas dan kontinuitasnya.
Meski memiliki keunggulan, akses air minum perpipaan melalui SPAM JP belum mampu menjangkau seluruh masyarakat. Oleh sebab itu, pemerintah Indonesia berupaya untuk meningkatkan akses air minum perpipaan demi memenuhi hak masyarakat atas air. Komitmen ini diejawantahkan dalam target Rencana Pembangunan Jangka Menengah Nasional (RPJMN) 2020-2024, yaitu 30% rumah tangga di Indonesia memperoleh akses air minum perpipaan pada tahun 2024 (Pemerintah Indonesia, 2020).
Perkembangan Akses Air Minum Perpipaan di Indonesia
Akses air minum perpipaan di Indonesia perlu dipantau secara berkala untuk melihat seberapa besar kesenjangan antara target yang ditetapkan dengan realisasinya. Perkembangan akses air minum perpipaan dapat dilihat pada gambar 2. Pada tahun 2020, akses air minum perpipaan mengalami peningkatan sebesar 0,51%. Namun pada tahun 2021, terjadi penurunan akses air minum perpipaan karena terdapat perubahan kebijakan pada asumsi jumlah orang per sambungan rumah (Kementerian PUPR, 2023). Peningkatan kembali terjadi pada tahun 2022 sebesar 0,45%.
Gambar 2. Perkembangan akses air minum perpipaan di Indonesia (Kementerian PUPR, 2023)
Gambar 2 menunjukkan bahwa kesenjangan antara nilai aktual akses air minum perpipaan di Indonesia dengan target yang ingin dicapai dalam RPJMN 2020-2024 masih memiliki kesenjangan, yakni sebesar 10,49%. Pemerintah mengerahkan berbagai upaya untuk meningkatkan capaian akses air minum perpipaan dan meniadakan kesenjangan tersebut, salah satunya melalui program National Urban Water Supply Project (NUWSP). Selama berjalannya program dari tahun 2020 hingga saat ini, NUWSP setidaknya berperan dalam tersambungnya 1.344.589 sambungan rumah (SR). Angka tersebut diestimasi dapat memberikan manfaat bagi 6.722.945 jiwa. Manfaat yang dimaksud yakni berupa kemudahan dalam mengakses air minum.
Gambar 3. Salah satu penerima manfaat program NUWSP di Kabupaten Lamongan
Dukungan NUWSP melalui pembangunan infrastruktur penyediaan air minum serta peningkatan kapasitas bagi penyelenggara SPAM memberikan dampak yang baik pada peningkatan akses air minum perpipaan. Oleh sebab itu, NUWSP serta program lainnya yang serupa perlu diperluas sehingga manfaat program-program tersebut berupa kemudahan akses air minum dapat dirasakan oleh lebih banyak orang.
Sumber:
1. Ardyanto, F. (2020): 6 Perbedaan Air Sumur dan PAM, Penting Dipahami, diperoleh melalui situs internet: https://www.liputan6.com/hot/read/4303506/6-perbedaan-air-sumur-dan-pam-penting-dipahami?page=7.
2. Baliilu (2020): Tingkatkan Kuantitas, Kualitas dan Kontinuitas, Perumda Air Minum Tirta Sewakadarma Bangun 3 Reservoir di Denpasar, diperoleh melalui situs internet: https://baliilu.com/tingkatkan-kuantitas-kualitas-dan-kontinuitas-perumda-air-minum-tirta-sewakadarma-bangun-3-reservoir-di-denpasar/.
3. Bappenas (2023): Peran Pemerintah Daerah dalam Keberlanjutan Program Air Minum Perkotaan Untuk Pencapaian Target RPJMN 2020-2024 dan SDGs 2030, Workshop Dukungan Eksekutif dan Legislatif dalam Pengembangan Program Air Minum di Perkotaan National Urban Water Supply Project (NUWSP), Bali, 2-4 Agustus 2023.
4. Caritra (2021): PDAM atau Sumur Gali?, diperoleh melalui situs internet: https://www.caritra.org/2021/06/07/pdam-atau-sumur-gali/.
5. Dokumentasi NUWSP.
6. Kamulyan, Puji (2018): Evaluasi Keberlanjutan Pengelolaan Sistem Penyediaan Air Minum Berbasis Masyarakat di Kota Blitar, Tesis Program Pascasarjana, Institut Teknologi Sepuluh November, Surabaya.
7. Kementerian PUPR (2016): Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat Republik Indonesia Nomor 27/PRT/M/2016 tentang Penyelenggaraan Sistem Penyediaan Air Minum.
8. Kementeria PUPR (2023): Praktik Terbaik Percepatan Pemenuhan Capaian Air Minum Secara Nasional dan Berdasarkan Program NUWSP, Lokakarya Praktik Baik Peningkatan Kapasitas Pemda dan BUMD AM dalam Mewujudkan Pemenuhan Akses Layanan Air Minum di Daerah Tahun 2023, Surabaya, 25 Oktober 2023.
9. Kementerian PUPR (2023): Rencana Strategis Percepatan Akses Air Minum, Workshop Dukungan Eksekutif dan Legislatif dalam Pengembangan Program Air Minum di Perkotaan National Urban Water Supply Project (NUWSP), Bali, 2-4 Agustus 2023.
10. Pamsimas (2020): POB Perencanaan SPAM Perdesaan, diperoleh melalui situs internet: https://pamsimas.pu.go.id/konten/pustaka/pob/2021/pob-perencanaan-spam-perdesaan-2021.pdf.
11. Pemerintah Indonesia (2020): Lampiran Peraturan Presiden Republik Indonesia Nomor 18 Tahun 2020 tentang Rencana Pembangunan Jangka Menengah Nasional 2020-2024.
12. Rizqo, K. A. (2018): PAM Lebih Aman dari Air Tanah, Warga Diminta Beralih, diperoleh melalui situs internet: https://news.detik.com/berita/d-3916617/pam-lebih-aman-dari-air-tanah-warga-diminta-beralih.
13. Zora, M., Gustina, E., dan Ulfah, M. (2022): Analisis Faktor-Faktor yang Berhubungan Dengan Akses Air Minum Aman di Wilayah Kerja Dinas Kesehatan Kabupaten OKU Tahun 2021, Jurnal Kesehatan Saelmakers PERDANA (JKSP), Vol. 5 No. 1.
Kredit Foto:
1. Cirebon Raya (2021): Sudah di Jalur yang Benar, Layanan Air Bersih di Indonesia Perlu Percepatan, diperoleh melalui situs internet: https://www.cirebonraya.com/nusantara/pr-4373118860/Sudah-di-Jalur-yang-Benar-Layanan-Air-Bersih-di-Indonesia-Perlu-Percepatan.
2. Dokumentasi Field Assistant NUWSP Kabupaten Lamongan.
3. Kieferpix dalam Getty Images.
4. Hanifah (2021): Menilik Perbandingan Sumur Bor Vs Sumur Gali. Lebih Baik Yang Mana Untuk Rumah?, diperoleh melalui situs internet: https://berita.99.co/perbandingan-sumur-bor-vs-sumur-gali/.
Ditulis oleh:
Deviana Matudilifa Yusuf
Access to Piped Drinking Water in Indonesia
Water is an essential requirement that must be fulfilled as humans rely heavily on it. Humans need water for various purposes, such as drinking, cooking, bathing, washing, etc. One method of accessing water to fulfill daily requirements is via the Piped Drinking Water Supply System (SPAM JP). SPAM JP is a collection of infrastructure for supplying drinking water to clients through a piped system. SPAM JP comprises the following components when functioning as intended: raw water units, production units, distribution units, and service units (Kamulyan, 2018). It is also possible to access drinking water through a method other than piped systems, known as a Non-Piped Drinking Water Supply System (SPAM BJP). Shallow wells, pumped wells, rainwater storage containers, water terminals, and spring catchment structures can all be examples of SPAM BJP (Ministry of PUPR, 2016). Discover additional information about SPAM JP and SPAM BJP here.
Figure 1. (a) SPAM JP (Cirebon Raya, 2021) and (b) SPAM BJP (Kompas in Hanifah, 2021)
In 2018, the Ministry of Health's Basic Health Research (Riskesdas) reported that Indonesian households mostly use protected dug wells, pipe networks, and pumped/drilled wells to access drinking water (Zora et al., 2022). If accumulated, SPAM BJP in the form of protected dug wells and pumped/drilled wells is utilized more than SPAM JP (pipe networks). Currently, the utilization of wells is extremely risky due to its reliance on weather and climate as well as the surrounding environmental conditions (Ardyanto, 2020; Caritra, 2021; Rizqo, 2018). Conversely, it is believed that SPAM JP can ensure the quality, quantity, and continuity of drinking water (Pamsimas, 2020; Ministry of PUPR, 2016). Bappenas (2023) reports that drinking water sourced from SPAM JP (piped water) has a higher percentage of meeting water quality standards compared to SPAM BJP. This phenomenon may occur due to the fact that SPAM JP is typically outfitted with water treatment plants that possess the capability to transform water into the desired quality (Ardyanto, 2020). In addition, SPAM JP's reservoir can help with meeting both quantity and continuity requirements for water distribution (Baliilu, 2020). The larger the reservoir capacity, the more quantity and continuity may be supported.
Despite offering certain benefits, the provision of piped drinking water via SPAM JP has failed to reach all Indonesian citizens. As a consequence, the Indonesian government is endeavoring to expand piped drinking water access so as to satisfy the fundamental human right to water. The commitment is exemplified in the National Medium Term Development Plan (RPJMN) target for 2020-2024, which states that by 2024, thirty percent of Indonesian households have access to piped drinking water (Government of Indonesia, 2020).
The Development of Piped Drinking Water Access in Indonesia
Periodical monitoring of Indonesia’s piped drinking water access is necessary to determine how big the gap between the established goal and its actualization. The development of Indonesia’s piped drinking water access is illustrated in figure 2. Piped drinking water access increased by 0,51% in 2020. On the other hand, access to piped drinking water declined in 2021 as a result of policy modifications concerning the assumed capacity of household connections (Ministry of PUPR, 2023). The increase occurred again in 2022 amounting to 0,45%.
Figure 2. The development of Indonesia’s piped drinking water access (Ministry of PUPR, 2023)
Figure 2 illustrates that there is still a 10.49% gap between the current value of access to piped drinking water in Indonesia and the RPJMN target. The government is making numerous initiatives to gain piped drinking water access and close the gap, one of which is through the National Urban Water Supply Project (NUWSP). From 2020 to the present, NUWSP has played a role in connecting at least 1,344,589 household connections (SR). This statistic is anticipated to offer benefits to 6,722,945 people. The benefit in consideration is in the form of easily accessing drinking water.
Figure 3. One of the NUWSP beneficiaries in Lamongan Regency
NUWSP's support in developing drinking water supply infrastructure and building capacity for SPAM operators has a good impact on the increase of piped drinking water access. As a result, NUWSP and other similar initiatives must be expanded so that the benefits of these programs, such as easy access to drinking water, can be reaped by a greater number of people.
Sources:
1. Ardyanto, F (2020): 6 Perbedaan Air Sumur dan PAM, Penting Dipahami, obtained through the internet site: https://www.liputan6.com/hot/read/4303506/6-perbedaan-air-sumur-dan-pam-penting-dipahami?page=7.
2. Baliilu (2020): Tingkatkan Kuantitas, Kualitas dan Kontinuitas, Perumda Air Minum Tirta Sewakadarma Bangun 3 Reservoir di Denpasar, obtained through the internet site: https://baliilu.com/tingkatkan-kuantitas-kualitas-dan-kontinuitas-perumda-air-minum-tirta-sewakadarma-bangun-3-reservoir-di-denpasar/.
3. Bappenas (2023): Peran Pemerintah Daerah dalam Keberlanjutan Program Air Minum Perkotaan Untuk Pencapaian Target RPJMN 2020-2024 dan SDGs 2030, Workshop on Executive and Legislative Support in the Development of Drinking Water Programs in Urban Areas within the National Urban Water Supply Project (NUWSP), Bali, August 2-4, 2023.
4. Caritra (2021): PDAM atau Sumur Gali?, obtained through the internet site: https://www.caritra.org/2021/06/07/pdam-atau-sumur-gali/.
5. Government of Indonesia (2020): Annex to Presidential Regulation of Indonesia Number 18 of 2020.
6. Kamulyan, Puji (2018): Evaluasi Keberlanjutan Pengelolaan Sistem Penyediaan Air Minum Berbasis Masyarakat di Kota Blitar, Graduate Thesis, Institut Teknologi Sepuluh November, Surabaya.
7. Ministry of PUPR (2016): Regulation of Indonesian Minister of Public Works and Housing Number 27/PRT/M/2016.
8. Ministry of PUPR (2023): Praktik Terbaik Percepatan Pemenuhan Capaian Air Minum Secara Nasional dan Berdasarkan Program NUWSP, Workshop on Best Practices for Increasing the Capacity of Local Governments and Drinking Water BUMD in Achieving Access to Drinking Water Services in the Regions in 2023, Surabaya, October 25, 2023.
9. Ministry of PUPR (2023): Rencana Strategis Percepatan Akses Air Minum, Workshop on Executive and Legislative Support in the Development of Drinking Water Programs in Urban Areas within the National Urban Water Supply Project (NUWSP), Bali, August 2-4, 2023.
10. NUWSP Documentations.
11. Pamsimas (2020): POB Perencanaan SPAM Perdesaan, obtained through the internet site: https://pamsimas.pu.go.id/konten/pustaka/pob/2021/pob-perencanaan-spam-perdesaan-2021.pdf.
12. Rizqo, K. A. (2018): PAM Lebih Aman dari Air Tanah, Warga Diminta Beralih, obtained through the internet site: https://news.detik.com/berita/d-3916617/pam-lebih-aman-dari-air-tanah-warga-diminta-beralih.
13. Zora, M., Gustina, E., and Ulfah, M. (2022): Analisis Faktor-Faktor yang Berhubungan Dengan Akses Air Minum Aman di Wilayah Kerja Dinas Kesehatan Kabupaten OKU Tahun 2021, Jurnal Kesehatan Saelmakers PERDANA (JKSP), Vol. 5 No. 1.
Photo Credits:
1. Cirebon Raya (2021): Sudah di Jalur yang Benar, Layanan Air Bersih di Indonesia Perlu Percepatan, obtained through the internet site: https://www.cirebonraya.com/nusantara/pr-4373118860/Sudah-di-Jalur-yang-Benar-Layanan-Air-Bersih-di-Indonesia-Perlu-Percepatan.
2. Kieferpix in Getty Images.
3. Hanifah (2021): Menilik Perbandingan Sumur Bor Vs Sumur Gali. Lebih Baik Yang Mana Untuk Rumah?, obtained through the internet site: https://berita.99.co/perbandingan-sumur-bor-vs-sumur-gali/.
4. NUWSP Field Assistant of Lamongan Regency Documentation.
Written by:
Deviana Matudilifa Yusuf
Translated by:
Lely Lydia Rahmawati
#nuwsp #ditairminun #ciptakarya #watersupply
#SPAMJP #pipedwater #aksesairminum #wateraccess #Indonesia
Available in English
35/B-NUWSP/Oktober/2023
Saat ini, banyak masyarakat yang sulit mendapatkan air karena kemarau berkepanjangan. Baca selengkapnya di sini. Oleh sebab itu, pemenuhan kebutuhan air perlu diupayakan dengan menggunakan sumber air baku yang bervariasi, salah satunya dengan memanfaatkan air laut. Dengan garis pantai terpanjang kedua di dunia, Indonesia memiliki paparan yang begitu tinggi terhadap air laut (Kementerian Kelautan dan Perikanan, 2019). Karenanya, pemanfaatan air laut untuk memenuhi kebutuhan air harian sangat mungkin dilakukan.
Air laut dapat diubah menjadi air minum melalui proses desalinasi. Desalinasi adalah suatu proses menghilangkan kandungan garam dari air laut atau air payau untuk menghasilkan air minum (Smart Water Magazine, 2023). Kadar garam dalam suatu sumber air dapat terukur melalui parameter Total Dissolved Solid (TDS) (Lianda dkk., 2015). Di Indonesia, nilai TDS air laut berkisar antara 18.000 – 35.000 ppm (Mapurna, 2022). Namun, nilai TDS dari air minum yang dapat dikonsumsi menurut Peraturan Menteri Kesehatan Republik Indonesia Nomor 2 Tahun 2023 harus lebih kecil dari 300 ppm. Oleh sebab itu, desalinasi dilakukan agar air laut memiliki kualitas yang baik untuk diminum.
Gambar 1. Ilustrasi penggunaan air desalinasi (Khatib, 2017)
Meski bisa menjadi alternatif dalam penyediaan air minum, pemanfaatan desalinasi masih terbilang kecil. Voutchkov (2016) mengemukakan bahwa desalinasi baru menyediakan 1% dari seluruh air minum di dunia. Namun, penggunaan desalinasi senantiasa meningkat seperti terlihat pada gambar 2. Pada tahun 2022, terdapat lebih dari 21.000 instalasi desalinasi di seluruh dunia (Eyl-Mazzega dan Cassignol, 2022). Secara global, produksi air desalinasi dipimpin oleh Arab Saudi dengan kapasitas produksi harian sebesar 35,7 juta m3. Negara ini memiliki 27 instalasi desalinasi yang tersebar di sepanjang garis pantainya (Sawe, 2017).
Gambar 2. Pertumbuhan desalinasi secara global (Jones, dkk., 2019 dalam Robbins, 2019)
Desalinasi di Indonesia
Tak hanya Arab Saudi, Indonesia pun telah menerapkan desalinasi dalam penyediaan air minum, salah satunya di Kepulauan Seribu. Pada tahun 2022, sebanyak 8 instalasi desalinasi telah tersedia di Kepulauan Seribu (Putri, 2023). Instalasi desalinasi ini dioperasikan dengan konsep Sea Water Reverse Osmosis sehingga sering disebut dengan nama SWRO. Skema pengolahan air laut menjadi air minum menggunakan SWRO dapat dilihat pada gambar 3.
Gambar 3. Skema pengolahan air laut menggunakan SWRO di Kepulauan Seribu (Dinas Sumber Daya Air Provinsi DKI Jakarta, 2019)
Secara keseluruhan, SWRO di Kepulauan Seribu dapat menghasilkan air minum dengan kapasitas 17 liter/detik (PAM Jaya, 2022). Sebaran serta kapasitasnya dapat dilihat pada gambar 4. Air minum yang diproduksi diestimasikan dapat melayani 13.770 sambungan rumah (Berita Jakarta, 2021; Media Indonesia, 2017). Angka ini dapat bertambah seiring dengan bertambahnya jumlah SWRO. Pada tahun 2023, Pemerintah DKI Jakarta membangun 1 SWRO tambahan di Pulau Sebira, Kepulauan Seribu (Putri, 2023).
Gambar 4. Sebaran instalasi desalinasi (SWRO) di Kepualauan Seribu dan kapasitasnya (PAM Jaya, 2022)
Gambar 5. Instalasi desalinasi di Kepulauan Seribu
Itulah sekilas pembahasan mengenai desalinasi. Semoga ke depannya, pemanfaatan desalinasi dapat meningkat untuk mendukung variasi penggunaan sumber air baku, baik secara global maupun secara lokal di Indonesia.
Sumber:
1. Berita Jakarta (2021): Dinas SDA Sudah Bangun Tujuh IPA SWRO di Kepulauan Seribu, diperoleh melalui situs internet: https://m.beritajakarta.id/read/89186/dinas-sda-sudah-bangun-tujuh-ipa-swro-di-kepulauan-seribu.
2. Eyl-Mazzega, Marc-Antoine dan Cassignol, Élise (2022): The Geopolitics of Seawater Desalination, Études de l’Ifri.
3. Kementerian Kelautan dan Perikanan (2019): Laut Masa Depan Bangsa, Mari Jaga Bersama, diperoleh melalui situs internet: https://kkp.go.id/artikel/12993-laut-masa-depan-bangsa-mari-jaga-bersama.
4. Kementerian Kesehatan (2023): Peraturan Menteri Kesehatan Republik Indonesia Nomor 2 Tahun 2023 Tentang Peraturan Pelaksanaan Peraturan Pemerintah Nomor 66 Tahun 2014 Tentang Kesehatan Lingkungan.
5. Lianda, J., Enda, D., Ariadi, Suhaimi, dan Wira M (2015): Pengolahan Air Laut Menggunakan Generator Uap Untuk Menghasilkan Air Tawar, Seminar Nasional Teknologi Informasi, Komunikasi, dan Industri (SNTIKI) 7.
6. Mapurna (2022): Desalinasi Air Laut Menjadi Sumber Air Tawar Masa Depan, diperoleh melalui situs internet: https://mapurna.id/desalinasi-air-laut/.
7. Media Indonesia (2017): Air Bersih Segera Mengalir ke Pulau Seribu, diperoleh melalui situs internet: https://mediaindonesia.com/megapolitan/88209/air-bersih-segera-mengalir-ke-pulau-seribu
8. PAM Jaya (2022): Profil Perusahaan PAM Jaya, diperoleh melalui situs internet: https://ppid.pamjaya.co.id/assets/InformasiBerkala-20221023T231455Z-001/IB/a_informasi_tentang_profil_pam_jaya.pdf.
9. Putri, L.M. (2023): SDA DKI Minta PAM Jaya Rawat SWRO Untuk Ketersediaan Air Bersih, diperoleh melalui situs internet: https://www.antaranews.com/berita/3772410/sda-dki-minta-pam-jaya-rawat-swro-untuk-ketersediaan-air-bersih.
10. Sawe, B. E. (2017): Countries Who Rely on Desalination, diperoleh melalui situs internet: https://www.worldatlas.com/articles/countries-who-rely-on-desalination.html.
11. Smart Water Magazine (2023): What Percentage of Water is Desalinated?, diperoleh melalui situs internet: https://smartwatermagazine.com/q-a/what-percentage-water-desalinated.
12. Voutchkov, Nikolay (2016): Desalination – Past, Present, and Future, diperoleh melalui situs internet: https://iwa-network.org/desalination-past-present-future/.
Kredit Foto:
1. Boissy, Gregory (2019): Newly Built Desalination Plants to Provide Clean Water in Thousand Islands, diperoleh melalui situs internet: https://www.thejakartapost.com/news/2019/02/04/newly-built-desalination-plants-to-provide-clean-water-in-thousand-islands.html.
2. Dinas Sumber Daya Air Provinsi DKI Jakarta (2019): Sistem Pengolahan Air Laut Menggunakan SWRO DI Kabupaten Kepulauan Seribu, diperoleh melalui situs internet: https://www.instagram.com/p/Bt0RD2EFH5D/.
3. Khatib, Said dalam Getty Images.
4. Robbins, Jim (2019): As Water Scarcity Increases, Desalination Plants Are on the Rise, diperoleh melalui situs internet: https://e360.yale.edu/features/as-water-scarcity-increases-desalination-plants-are-on-the-rise.
5. The New York Times (2019): The World Can Make More Water From The Sea, But at What Cost?, diperoleh melalui situs internet: https://www.nytimes.com/2019/10/22/climate/desalination-water-climate-change.html.
Ditulis oleh:
Deviana Matudilifa Yusuf
Has Desalination been Implemented in Indonesia?
Many people are presently unable to access water due to the protracted dry season. More information can be found here. As a result, efforts must be made to meet water needs by utilizing a range of raw water sources, one of which is seawater. With the world's second-longest coastline, Indonesia is extremely exposed to seawater (Ministry of Maritime Affairs and Fisheries, 2019). As a result, using seawater to cover daily water needs is quite feasible.
Seawater can be converted to drinking water through desalination. Desalination is the process of eliminating salt from seawater or brackish water in order to generate drinking water (Smart Water Magazine, 2023). The Total Dissolved Solid (TDS) parameter can be used to determine the salt content of a water source (Lianda et al., 2015). TDS levels in Indonesia’s seawater range from 18.000 to 35.000 ppm (Mapurna, 2022). However, according to Regulation of Indonesian Minister of Health Number 2 of 2023, the TDS value of drinking water must be less than 300 ppm. Therefore, desalination is carried out to ensure that seawater is safe to drink.
Figure 1. Illustration of the use of desalinated water (Khatib, 2017)
Despite the fact that it can be used to provide drinking water, the use of desalination is currently limited. According to Voutchkov (2016), desalination barely provides 1% of the world's drinking water. However, as illustrated in Figure 2, the usage of desalination is increasing. There were around 21,000 desalination facilities worldwide by 2022 (Eyl-Mazzega and Cassignol, 2022). Saudi Arabia leads the world in desalinated water production, with a daily capacity of 35.7 million m3. The country's coastline is home to 27 desalination facilities (Sawe, 2017).
Figure 2. Global growth of desalination (Jones, et al., 2019 in Robbins, 2019)
Desalination in Indonesia
In addition to Saudi Arabia, Indonesia also has implemented providing drinking water by desalination in the Thousand Islands (Pulau Seribu). Puri (2023) reports that the Thousand Islands have 8 desalination plants by 2022. SWRO describes this desalination facility, which uses Sea Water Reverse Osmosis. The process of turning seawater into drinking water through SWRO is shown in Figure 3.
Figure 3. Seawater treatment scheme in the Thousand Islands utilizing SWRO (DKI Jakarta Provincial Water Resources Department, 2019)
Ultimately, the Thousand Islands SWRO can produce drinking water at a rate of 17 liters per second (PAM Jaya, 2022). Figure 4 depicts their distribution and capacity. The produced drinking water is expected to feed 13,770 household connections (Berita Jakarta, 2021; Media Indonesia, 2017). This statistic may rise as the number of SWROs grows. The DKI Jakarta Government plans to construct one more SWRO on Sebira Island in 2023 (Putri, 2023).
Figure 4. Distribution of desalination plants (SWRO) in Thousand Islands and their capacity (PAM Jaya, 2022)
Figure 5. Desalination plant in the Thousand Islands (Boissy, 2019)
That concludes our discussion of desalination. Hopefully, the use of desalination will rise in the future to enable the use of varied raw water sources, both globally and locally in Indonesia.
Sources:
1. Berita Jakarta (2021): Dinas SDA Sudah Bangun Tujuh IPA SWRO di Kepulauan Seribu, obtained through the internet site: https://m.beritajakarta.id/read/89186/dinas-sda-sudah-bangun-tujuh-ipa-swro-di-kepulauan-seribu.
2. Eyl-Mazzega, Marc-Antoine and Cassignol, Élise (2022): The Geopolitics of Seawater Desalination, Études de l’Ifri.
3. Lianda, J., Enda, D., Ariadi, Suhaimi, and Wira M (2015): Pengolahan Air Laut Menggunakan Generator Uap Untuk Menghasilkan Air Tawar, Seminar Nasional Teknologi Informasi, Komunikasi, dan Industri (SNTIKI) 7.
4. Mapurna (2022): Desalinasi Air Laut Menjadi Sumber Air Tawar Masa Depan, obtained through the internet site: https://mapurna.id/desalinasi-air-laut/.
5. Media Indonesia (2017): Air Bersih Segera Mengalir ke Pulau Seribu, obtained through the internet site: https://mediaindonesia.com/megapolitan/88209/air-bersih-segera-mengalir-ke-pulau-seribu.
6. Ministry of Maritime Affairs and Fisheries (2019): Laut Masa Depan Bangsa, Mari Jaga Bersama, obtained through the internet site: https://kkp.go.id/artikel/12993-laut-masa-depan-bangsa-mari-jaga-bersama.
7. Ministry of Health (2023): Regulation of Indonesian Minister of Health Number 2 of 2023.
8. PAM Jaya (2022): Profil Perusahaan PAM Jaya, obtained through the internet site: https://ppid.pamjaya.co.id/assets/InformasiBerkala-20221023T231455Z-001/IB/a_informasi_tentang_profil_pam_jaya.pdf.
9. Putri, L.M. (2023): SDA DKI Minta PAM Jaya Rawat SWRO Untuk Ketersediaan Air Bersih, obtained through the internet site: https://www.antaranews.com/berita/3772410/sda-dki-minta-pam-jaya-rawat-swro-untuk-ketersediaan-air-bersih.
10. Sawe, B. E. (2017): Countries Who Rely on Desalination, obtained through the internet site: https://www.worldatlas.com/articles/countries-who-rely-on-desalination.html.
11. Smart Water Magazine (2023): What Percentage of Water is Desalinated?, obtained through the internet site: https://smartwatermagazine.com/q-a/what-percentage-water-desalinated.
12. Voutchkov, Nikolay (2016): Desalination – Past, Present, and Future, obtained through the internet site: https://iwa-network.org/desalination-past-present-future/.
Photo Credits:
1. Boissy, Gregory (2019): Newly Built Desalination Plants to Provide Clean Water in Thousand Islands, obtained through the internet site: https://www.thejakartapost.com/news/2019/02/04/newly-built-desalination-plants-to-provide-clean-water-in-thousand-islands.html.
2. DKI Jakarta Provincial Water Resources Department (2019): Sistem Pengolahan Air Laut Menggunakan SWRO DI Kabupaten Kepulauan Seribu, obtained through the internet site: https://www.instagram.com/p/Bt0RD2EFH5D/.
3. Khatib, Said in Getty Images.
4. Robbins, Jim (2019): As Water Scarcity Increases, Desalination Plants Are on the Rise, obtained through the internet site: https://e360.yale.edu/features/as-water-scarcity-increases-desalination-plants-are-on-the-rise.
5. The New York Times (2019): The World Can Make More Water From The Sea, But at What Cost?, obtained through the internet site: https://www.nytimes.com/2019/10/22/climate/desalination-water-climate-change.html.
Written by:
Deviana Matudilifa Yusuf
Translated by:
Lely Lydia Rahmawati
#nuwsp #ditairminun #ciptakarya #watersupply
#desalinasi #desalination #Indonesia #SWRO #RO #reverseosmosis #kepulauanseribu #thousandislands #DKIJakarta
Available in English
34/A-NUWSP/Oktober/2023
Kabupaten Sragen adalah salah satu wilayah di Jawa Tengah yang kerap mengalami kekeringan. Ramadhani dkk. (2023) mengungkapkan bahwa kekeringan di Sragen terjadi hampir setiap tahun. Umumnya, kekeringan setiap tahun memiliki intensitas yang normal. Kabupaten Sragen mengalami kekeringan dengan intensitas yang sedang pada tahun 2012, 2015, dan 2018. Sementara itu, kekeringan yang parah terjadi pada tahun 2014 dan 2019. Tahun 2023 ini, Sragen kembali merasakan kekeringan, khususnya di 7 kecamatan. Kecamatan yang terdampak kekeringan tahun 2023 ini meliputi Kecamatan Miri, Sumberlawang, Mondokan, Gesi, Jenar, Tangen, dan Sukodono (Choir, 2023).
Kekeringan yang terjadi setiap tahun berdampak pada sulitnya mengakses air untuk keperluan harian. Ibu Rini, salah satu warga Kecamatan Jenar menyampaikan bahwa ketika kekeringan terjadi, sumur-sumur masyarakat kering sehingga air sulit diperoleh. Ia menambahkan, masyarakat harus membeli air keliling seharga Rp 3.500-Rp 4.000/jeriken untuk memenuhi kebutuhan air. Sebagian masyarakat juga memanfaatkan bantuan air yang disalurkan oleh pemerintah setempat.
Gambar 1. Warga Sragen yang mengantre untuk mendapatkan bantuan air (Mulato, 2023)
Kekeringan pada tahun 2023 sedikit berbeda dengan kekeringan pada tahun-tahun sebelumnya. Saat ini, kekeringan diantisipasi dengan upaya yang lebih mendalam, salah satunya melalui program NUWSP. Pada tahun 2021 lalu, Kabupaten Sragen mendapatkan bantuan melalui program NUWSP berjenis bantuan pendamping. Bantuan ini ditujukan untuk meningkatkan layanan penyediaan air di Sragen sekaligus mengantisipasi kekeringan di 2 kecamatan, yaitu Kecamatan Jenar dan Tangen. Kegiatan NUWSP di Sragen terdiri dari pengadaan dan pemasangan jaringan distribusi utama (JDU). Jaringan distribusi yang dibangun melalui program NUWSP akan disempurnakan kebermanfaatannya setelah seluruh elemen SPAM terbangun. Elemen SPAM yang dimaksud meliputi:
1. jaringan distribusi bagi (JDB);
2. jaringan pipa transmisi;
3. unit aerasi dan filtrasi pada Instalasi Pengolahan Air (IPA);
4. reservoir Bulakrejo;
5. reservoir Dawung; dan
6. jaringan distribusi layanan (JDL).
Infrastruktur ini dibangun melalui dukungan dana daerah dan dana nonpublik berupa pinjaman perbankan dan hibah Pemerintah Belanda. Kombinasi bantuan NUWSP, dana daerah, dan dana nonpublik di Kabupaten Sragen telah mendorong terbangunnya Sistem Penyediaan Air Minum (SPAM) Ibu Kota Kecamatan (IKK) Jenar-Tangen seperti terlihat pada gambar 2.
​​​​​​​​​​​​​​
​​​​​​​
Gambar 2. SPAM IKK Jenar-Tangen
Program NUWSP di Kabupaten Sragen melalui SPAM IKK Jenar-Tangen diharapkan dapat meningkatkan layanan penyediaan air sekaligus mengantisipasi kekeringan di Kecamatan Jenar dan Tangen. Sebelum program NUWSP dilaksanakan, Kecamatan Jenar dan Tangen belum memperoleh layanan air dari Perumda Air Minum Tirto Negoro. Setelah kegiatan fisik dirampungkan, program NUWSP diharapkan dapat memberikan akses air melalui 1.600 sambungan rumah baru di 2 kecamatan ini. Hingga bulan September tahun 2023, sebanyak 1.411 sambungan rumah telah terpasang. Oleh sebab itu, kini sebagian masyarakat Jenar dan Tangen tidak lagi merasakan sulitnya air ketika kekeringan terjadi. Ibu Rini mengungkapkan, “Kami terima kasih mas, saya selama ada air dari PDAM tidak pernah membeli air lagi”.
Gambar 3. Perumda Air Minum Tirto Negoro melakukan wawancara kepada warga Kecamatan Jenar
Direktur Umum Perumda Air Minum Tirto Negoro, Handoko menyampaikan bahwa layanan air di Tangen dan Jenar mengurangi permintaan bantuan air yang masuk ke Perumda Air Minum Tirto Negoro. Ia menambahkan, permintaan bantuan air pada periode Juni-Agustus tahun 2023 ini baru 34 tangki. Padahal pada periode yang sama di masa kekeringan parah beberapa tahun lalu, permintaan bantuan air dapat mencapai ratusan tangki (Rahayu, 2023). Data tersebut menunjukkan bahwa langkah antisipasi kekeringan melalui program NUWSP dapat berdampak signifikan.
Itulah sekilas cerita bagaimana program NUWSP membantu Kabupaten Sragen mengantisipasi kekeringan. Semoga manfaat program NUWSP juga dapat dirasakan di berbagai wilayah lainnya secara luas.
Sumber:
1. Choir, M.N.A. (2023): Tujuh Kecamatan di Sragen Terdampak Kekeringan, diperoleh melalui situs internet: https://rejogja.republika.co.id/berita/s0wus7291/tujuh-kecamatan-di-sragen-terdampak-kekeringan.
2. Dokumentasi NUWSP
3. Dokumentasi Perumda Air Minum Tirto Negoro.
4. Rahayu (2023): Layanan PDAM Sragen Akhirnya Menjangkau Tangen dan Jenar, Krisis Air Berkurang, diperoleh melalui situs internet: https://soloraya.solopos.com/layanan-pdam-sragen-akhirnya-menjangkau-tangen-dan-jenar-krisis-air-berkurang-1719620.
5. Ramadhani, M.Z., Arifianto, F., dan Giarno (2023): Perbandingan Standardized Precipitation Index dan Standardized Anomaly Index untuk Penentuan Tingkat Kekeringan di Kabupaten Sragen, Jawa Tengah, Semesta Teknika, Vol. 26 No. 1, 86-96.
Kredit Foto:
1. Dokumentasi Field Assistant NUWSP Kabupaten Sragen.
2. Mulato (2023): Kekeringan Sragen Meluas Jadi 7 Kecamatan, 6.900 KK Masuk Rawan Air Bersih, diperoleh melalui situs internet: https://www.rri.co.id/daerah/356404/kekeringan-sragen-meluas-jadi-7-kecamatan-6-900-kk-masuk-rawan-air-bersih.
Ditulis oleh:
Deviana Matudilifa Yusuf
NUWSP Helps Sragen Regency in Drought Anticipation
Sragen Regency is one of the areas in Central Java that frequently afflicted by drought. According to the findings of Ramadhani et al. (2023), the occurrence of drought in Sragen is observed on an annual basis. Typically, each year's drought has a standard level of intensity. Drought of moderate intensity was observed in Sragen Regency in the years 2012, 2015, and 2018. Meanwhile, severe droughts occurred in 2014 and 2019. It is expected that Sragen will see a recurrence of drought in the year 2023, with a particular emphasis on its impact on seven subdistricts. The subdistricts impacted by the drought in 2023 comprise Miri, Sumberlawang, Mondokan, Gesi, Jenar, Tangen, and Sukodono subdistricts (Choir, 2023).
The annual drought makes it difficult to obtain water for daily requirements. Mrs. Rini, a Jenar District resident, stated that when there is a drought, the community's wells dry up, making it impossible to access water. She noted that to meet their water needs, people must purchase water for IDR 3.500-4.000/gallon. Some people also take benefit from water assistance provided by the local government.
Figure 1. Sragen residents queuing to get water assistance (Mulato, 2023)
The drought that occurred in 2023 differs marginally from previous droughts. At this time, drought is anticipated with increased efforts, including the NUWSP program. In 2021, Sragen Regency received a matching grant as part of the NUWSP initiative. The grant is intended to enhance Sragen’s water services and provide drought anticipation for two subdistricts, specifically Jenar and Tangen. In Sragen, the procurement and installation of the main distribution network (JDU) constitute the activities of NUWSP. The utility of the distribution network constructed through the NUWSP program will be enhanced once all SPAM components have been completed. The SPAM components at issue consist of:
1. secondary distribution networks (JDB);
2. transmission pipeline networks;
3. units of aeration and filtration at Water Treatment Plants (WTP);
4. Bulakrejo reservoir;
5. Dawung reservoir; and
6. service distribution networks (JDL).
The construction of this infrastructure was financed through the allocation of regional and nonpublic funds, including bank loans and grants from the Dutch Government. As depicted in Figure 2, the progression of the Jenar-Tangen District Capital Drinking Water Supply System (SPAM IKK) in Sragen Regency has been facilitated by a combination of NUWSP grant, regional fund, and nonpublic fund.
​​​​​​​​​​​​​​
​​​​​​​
Figure 2. Jenar-Tangen SPAM IKK
As a part of the NUWSP program, Jenar-Tangen SPAM IKK in Sragen Regency is expected to enhance water services in anticipation of the impending drought in Jenar and Tangen subdistricts. These subdistricts had not been supplied with water services by Tirto Negoro Drinking Water Perumda (local government-owned water utility) prior to the implementation of the NUWSP program. It is expected that the NUWSP program will facilitate water access in these two subdistricts via 1.600 new household connections once the construction is completed. As of September 2023, the cumulative number of household connections installed stands at 1.411. As a consequence, certain residents of Jenar and Tangen are presently exempt from water scarcity during periods of drought. Mrs. Rini declared, "We thank you, sir, as long as there is water from PDAM, we will never buy water again."
Figure 3. Tirto Negoro Drinking Water Perumda conducts interviews with resident of Jenar District
Handoko, the general director of Tirto Negoro Drinking Water Perumda, stated that water services in Tangen and Jenar reduced the number of requests for water assistance that the organization received. He further stated that the number of containers requesting water assistance from June to August 2023 was a mere 34. During the aforementioned period, hundreds of containers were requested for water assistance during a severe drought several years ago (Rahayu, 2023). This information demonstrates that measures taken to anticipate droughts via the NUWSP program can have a substantial effect.
That's a glimpse of the story of how the NUWSP program helped Sragen Regency anticipate drought. Hopefully, the NUWSP program's advantages will also be felt strongly in a number of other areas.
Sources:
1. Choir, M.N.A. (2023): Tujuh Kecamatan di Sragen Terdampak Kekeringan, obtained through the internet site: https://rejogja.republika.co.id/berita/s0wus7291/tujuh-kecamatan-di-sragen-terdampak-kekeringan.
2. Documentation of Tirto Negoro Drinking Water Perumda.
3. NUWSP Documentation.
4. Rahayu (2023): Layanan PDAM Sragen Akhirnya Menjangkau Tangen dan Jenar, Krisis Air Berkurang, obtained through the internet site: https://soloraya.solopos.com/layanan-pdam-sragen-akhirnya-menjangkau-tangen-dan-jenar-krisis-air-berkurang-1719620.
5. Ramadhani, M.Z., Arifianto, F., and Giarno (2023): Perbandingan Standardized Precipitation Index dan Standardized Anomaly Index untuk Penentuan Tingkat Kekeringan di Kabupaten Sragen, Jawa Tengah, Semesta Teknika, Vol. 26 No. 1, 86-96.
Photo Credits:
1. NUWSP Field Assistant of Sragen Regency Documentation.
2. Mulato (2023): Kekeringan Sragen Meluas Jadi 7 Kecamatan, 6.900 KK Masuk Rawan Air Bersih, obtained through the internet site: https://www.rri.co.id/daerah/356404/kekeringan-sragen-meluas-jadi-7-kecamatan-6-900-kk-masuk-rawan-air-bersih.
Written by:
Deviana Matudilifa Yusuf
Translated by:
Lely Lydia Rahmawati
#nuwsp #ditairminun #ciptakarya #watersupply
#nuwspsragen #kabupatensragen #pemdasragen #perumdamsragen #tirtonegoro #kekeringan #drought #krisisair #waterscarcity
Available in English
33/B-NUWSP/Oktober/2023
NEWater Visitor Centre adalah suatu pusat edukasi di Singapura yang memperkenalkan dan mempromosikan konsep keberlanjutan air. Di tempat ini, air buangan yang dihasilkan masyarakat akan diolah menjadi air yang aman untuk dikonsumsi. Bagaimana proses pengolahan air di NEWater Visitor Centre? Seperti apa perjalanan NEWater Visitor Centre? Dan apa perannya dalam mendukung keberlanjutan air? Mari simak penjelasan berikut.
Pengolahan Air di NEWater Visitor Centre
NEWater Visitor Centre menggunakan teknologi yang canggih untuk mengolah air buangan menjadi air yang aman dikonsumsi. Pada tahap awal, air buangan akan dikumpulkan dan diolah terlebih dahulu di water reclamation plant atau instalasi daur ulang air. Proses pengolahan air di water reclamation plant dapat dilihat pada gambar 1. Air yang telah diolah kemudian akan dikirim ke NEWater Visitor Centre dan menjalani proses pengolahan lanjutan. Pengolahan air di NEWater Visitor Centre terdiri dari 3 tahap yang meliputi mikrofiltrasi, reverse osmosis, dan desinfeksi ultraviolet seperti terlihat pada gambar 2 (PUB Singapore’s National Water Agency, 2016; 2023).
Gambar 1. Proses pengolahan air di water reclamation plant (PUB Singapore’s National Water Agency, 2016; 2023)
Gambar 2. Proses pengolahan air di NEWater Visitor Centre (PUB Singapore’s National Water Agency, 2023)
Pengolahan tahap pertama yaitu mikrofiltrasi. Pada tahap ini, air dilewatkan melalui membran untuk menyaring partikel mikroskopis dan bakteri. Selanjutnya, air dialirkan melalui tahap pengolahan kedua, yaitu reverse osmosis. Reverse osmosis memanfaatkan penggunaan membran semipermeabel dengan pori-pori yang sangat kecil. Membran tersebut memungkinkan molekul air untuk melewatinya sambil meninggalkan kontaminan, seperti virus, bakteri, logam berat, hidrokarbon aromatik, pestisida, dan lain-lain. Setelah melalui proses reverse osmosis, air sebetulnya I sudah memiliki kualitas yang tinggi. Namun, NEWater Visitor Centre memberikan langkah keamanan tambahan untuk menjamin kemurnian air yang diolah melalui proses disinfeksi ultraviolet (UV). Proses ini digunakan untuk menghilangkan bakteri dan virus yang tersisa dari dua proses sebelumnya (PUB Singapore’s National Water Agency, 2023).
Gambar 3. Rangkaian proses pengolahan yang meliputi: (a) water reclamation plant; (b) mikrofiltrasi; (c) reverse osmosis, dan (d) desinfeksi ultraviolet (PUB Singapore’s National Water Agency, 2016)
Perjalanan NEWater Visitor Centre
Sebelum berhasil melakukan daur ulang air secara masif, Singapura melakukan penelitian pada tahun 1970-an untuk menentukan kelayakan produksi air daur ulang. Hasil studi menunjukkan bahwa proses daur ulang air menggunakan teknologi membran secara teknis dapat dilakukan, namun memerlukan biaya yang tinggi. Pada waktu tersebut, keandalan teknologi membran juga belum terbukti. Di tahun 1990-an, teknologi membran meningkat pesat, baik dari segi biaya maupun bukti keandalannya, sehingga mulai banyak digunakan di berbagai negara (PUB Singapore’s National Water Agency, 2023).
Pada tahun 1998, Public Utilities Board (PUB) atau Badan Air Nasional Singapura membentuk tim untuk menguji penggunaan teknologi membran terbaru yang dinilai terbukti dapat mendaur ulang air untuk keperluan minum. Dua tahun setelahnya, perusahaan tersebut meresmikan instalasi percontohan yang dapat memproduksi 10.000 m3 air setiap hari. Serangkaian pengujian serta audit dilakukan pada air yang diproduksi. Hasilnya, air daur ulang NEWater dinilai sebagai sumber air yang aman dan berkelanjutan. Air ini juga memiliki kualitas yang baik karena memenuhi persyaratan air minum WHO (World Health Organization) dan US EPA (United States Environmental Protection Agency). Pada tahun 2003, Singapura secara resmi membuka dua instalasi NEWater pertama di Bedok dan Kranji serta NEWater Visitor Centre, sebuah museum air untuk memamerkan perjalanan Singapura menuju keberlanjutan air (PUB Singapore’s National Water Agency, 2022; 2023).
Peran NEWater dalam Mendukung Keberlanjutan Air
Ketersediaan air merupakan perhatian utama bagi Negara Singapura. Minimnya lahan dan padatnya penduduk membuat negara ini memiliki area resapan yang terbatas (Tan dan Rawat, 2018). Tak hanya itu, Singapura juga kekurangan sumber air tawar alami (Teo, 2019). Studi UNESCO pada tahun 2006 mengungkapkan bahwa Singapura berada pada peringkat ke-170 dari 190 negara berdasarkan ketersediaan air tawar yang dimilikinya (Khoo, 2009). Singapura diestimasi hanya mampu memenuhi 5% dari kebutuhan air nasionalnya secara mandiri (Paramitha, 2023).
Kondisi tersebut mendorong Singapura untuk menerapkan strategi bagi keberlanjutan air di sana. Keberlanjutan air mengacu pada ketersediaan air untuk keperluan domestik, pertanian, dan industri (Robeco, 2023). Strategi yang diterapkan Singapura dalam mendukung keberlanjutan air dinamakan “Four National Taps” yang meliputi (PUB Singapore’s National Water Agency, 2015):
1. Pemanfaatan air buangan melalui program NEWater;
2. Pemanfaatan air hujan melalui pembangunan reservoir yang dilengkapi dengan saluran drainase terintegrasi;
3. Pemanfaatan air laut melalui desalinasi air; dan
4. Pengimporan air bersih dari Malaysia.
Program NEWater merupakan salah satu pilar keberlanjutan air di Singapura. Saat ini, program NEWater telah melahirkan 5 instalasi termasuk di antaranya NEWater Visitor Centre (PUB Singapore’s National Water Agency, 2023). Pada tahun 2018, program NEWater telah berhasil memenuhi 40% dari kebutuhan air di Singapura (Malik, 2021). Menurut PUB Singapore’s National Water Agency (2023), sebagian besar air yang diproduksi melalui NEWater digunakan untuk keperluan industri dan pendingin udara di pabrik wafer, kawasan industri, dan bangunan komersial. Sebagian kecilnya akan dimanfaatkan secara tidak langsung untuk minum melalui pengisian reservoir selama musim kemarau. Air baku dari reservoir nantinya akan diolah terlebih dahulu sebelum dialirkan ke konsumen sebagai air keran.
Tak hanya berkontribusi dalam ketersediaan air di Singapura, program NEWater juga berupaya untuk mengubah persepsi masyarakat mengenai penggunaan air daur ulang. Hal ini dilakukan untuk mempersiapkan masyarakat bila di masa mendatang NEWater akan menjadi sumber utama air minum Singapura (Listyasari, 2012). Pasalnya, NEWater diharapkan dapat memenuhi 55% kebutuhan air Singapura pada tahun 2060 (Malik, 2021). Sebelum NEWater diperkenalkan ke publik, PUB telah melakukan serangkaian kampanye edukasi mengenai ketatnya proses produksi air buangan dan amannya air olahan tersebut untuk diminum. Proses kampanye melibatkan berbagai stakeholder seperti pemerintah, tokoh masyarakat, pakar air, dunia usaha, dan sekolah (Listyasari, 2012; PUB Singapore’s National Water Agency, 2016). Melalui pendirian NEWater Visitor Centre, pemerintah Singapura berupaya melakukan edukasi berkelanjutan. Hadirnya museum air canggih yang menyuguhkan tur interaktif serta berbagai pelatihan terkait dapat memastikan pemahaman dan dukungan masyarakat yang berkelanjutan (PUB Singapore’s National Water Agency, 2016).
​​​​​​​​​​​​​​
Gambar 4. Rangkaian aktivitas di NEWater Visitor Centre (Howsy, 2021; Kronpaiboon, 2023; Moriyama, 2017)
Itulah penjelasan mengenai NEWater Visitor Centre sebagai bagian dari program NEWater. Harapannya, strategi Singapura dalam mendukung keberlanjutan air melalui NEWater Visitor Centre serta program NEWater dapat diadaptasi oleh Indonesia untuk perbaikan penyediaan air ke depannya.
Sumber:
1. Khoo, T.C. (2009): Singapore Water: Yesterday, Today and Tomorrow, diperoleh melalui situs internet: https://link.springer.com/chapter/10.1007/978-3-540-89346-2_12.
2. Listyasari, Maraita (2012): Belajar Mengelola Air Buangan dari Singapura, diperoleh melalui situs internet: https://www.nawasis.org/portal/artikel/read/belajar-mengelola-air-buangan-dari-singapura-maraita-listyasari-/51000.
3. Malik, Tania (2021): Water Sustainability in Singapore, diperoleh melalui situs internet: https://watercenter.sas.upenn.edu/splash/water-sustainability-singapore.
4. PUB Singapore’s National Water Agency (2015): NEWater: The Singapore Water Story, diperoleh melalui situs internet: https://www.youtube.com/watch?v=5BGUT7BjPl0&t=62s.
5. PUB Singapore’s National Water Agency (2016): NEWater: A Singapore Success Story, diperoleh melalui situs internet: https://www.youtube.com/watch?v=DWWU-8_4wu0.
6. PUB Singapore’s National Water Agency (2022): Journey of NEWater, diperoleh melalui situs internet: https://www.pub.gov.sg/watersupply/fournationaltaps/newater.
7. PUB Singapore’s National Water Agency (2023): NEWater Production Process, diperoleh melalui situs internet: https://beta.pub.gov.sg/Public/WaterLoop/OurWaterStory/NEWater.
8. Paramitha, Diandra (2023): Dilema Air Singapura: Negara Maju yang Masih Mengimpor Air, diperoleh melalui situs internet: https://www.goodnewsfromindonesia.id/2023/05/25/dilema-air-singapura-negara-maju-yang-masih-mengimpor-air.
9. Robeco (2023): Water Sustainability, diperoleh melalui situs internet: https://www.robeco.com/en-int/glossary/sustainable-investing/water-sustainability.
10. Tan, T.P dan Rawat, S. (2018): NEWater in Singapore, diperoleh melalui situs internet: https://www.globalwaterforum.org/2018/01/15/newater-in-singapore/.
11. Teo, En Qi (2019): Singapore’s Solution to Water Scarcity: NEWater, diperoleh melalui situs internet: https://savethewater.org/singapores-solution-to-water-scarcity-newater/.
Kredit Foto:
1. Howsy (2021) dalam Google Photos.
2. Kronpaiboon, Sanchai (2023) dalam Google Photos.
3. Moriyama, Masaaki (2017) dalam Google Photos.
4. PUB Singapore’s National Water Agency (2016): NEWater: A Singapore Success Story, diperoleh melalui situs internet: https://www.youtube.com/watch?v=DWWU-8_4wu0.
5. PUB Singapore’s National Water Agency (2023): NEWater Production Process, diperoleh melalui situs internet: https://beta.pub.gov.sg/Public/WaterLoop/OurWaterStory/NEWater.
6. PUB Singapore’s National Water Agency (2023): Used Water Treatment Process, diperoleh melalui situs internet: https://www.pub.gov.sg/usedwater/treatment/usedwatertreatmentprocess.
Ditulis oleh:
Deviana Matudilifa Yusuf
NEWater Visitor Centre, One of Singapore’s Water Sustainability Pillars
NEWater Visitor Centre is an educational centre in Singapore that introduces and promotes the concept of water sustainability. This facility will be responsible for processing used water produced by the community into ultra-clean water. How is the water treatment process at the NEWater Visitor Centre? How is the journey of NEWater Visitor Centre? And how does it contribute to water sustainability? Let's examine the explanation that follows.
Water Treatment Process at NEWater Visitor Centre
NEWater Visitor Centre uses modern technology to convert used water into water that is safe for consumption. Initially, used water will be gathered and subsequently treated at a water reclamation plant. Figure 1 illustrates the water treatment process at the water reclamation plant. The treated water will then be transported to the NEWater Visitor Centre for additional treatment. As illustrated in Figure 2, the water treatment process at the NEWater Visitor Centre comprises three distinct stages: microfiltration, reverse osmosis, and ultraviolet disinfection (PUB Singapore’s National Water Agency, 2016; 2023).
Figure 1. Water treatment process at water reclamation plant (PUB Singapore's National Water Agency, 2016; 2023)
Figure 2. Water treatment process at NEWater Visitor Centre (PUB Singapore’s National Water Agency, 2023)
Microfiltration is the first stage of water treatment process. At this stage, water flows through a membrane that filters minute particles and microorganisms. The water then passes through the second stage of treatment, reverse osmosis. Reverse osmosis makes use of a semi-permeable membrane with extremely small pores. The membrane permits water molecules to pass through while keeping contaminants like viruses, bacteria, heavy metals, aromatic hydrocarbons, pesticides, and so on behind. After these processes, the water is already of high quality. NEWater Visitor Centre, on the other hand, takes further precautions to ensure the purity of water treated with ultraviolet (UV) disinfection. This phase removes bacteria and viruses that were left over from the previous two stages (PUB Singapore's National Water Agency, 2023).
Figure 3. A series of treatment processes including: (a) water reclamation plant; (b) microfiltration; (c) reverse osmosis; and (d) ultraviolet disinfection (PUB Singapore's National Water Agency, 2016)
Journey of NEWater Visitor Centre
Singapore conducted studies in the 1970s to assess the feasibility of producing reclaimed water before successfully adopting extensive water reclamation. The study's findings reveal that water reclamation utilizing membrane technology is theoretically feasible but expensive. At that time, the reliability of membrane technology also had not been proven. By the 1990s, membrane technology’s cost and performance had improved considerably so it became widely utilized in other countries (PUB Singapore's National Water Agency, 2023).
The Public Utilities Board (PUB) or National Water Agency of Singapore set up a team in 1998 to examine the usage of the most recent membrane technology, which was declared capable of water reclamation for drinking purposes. Two years later, it unveiled a full-scale pilot plant that capable of producing 10.000 m3 of water per day. The water produced is subjected to a battery of testing and audits. As a result, NEWater's reclaimed water is regarded as a safe and sustainable water source. This water is also of high quality because it complies with WHO (World Health Organisation) and US EPA’s (United States Environmental Protection Agency) drinking water standards. Singapore formally opened the first two NEWater plants in Bedok and Kranji in 2003, as well as the NEWater Visitor Centre, a water museum showcasing Singapore's journey towards water sustainability (PUB Singapore's National Water Agency, 2022; 2023).
NEWater's Role in Supporting Water Sustainability
Water availability is a major concern for Singapore. Because of a land shortage and a dense population, this country has limited catchment areas (Tan and Rawat, 2018). Furthermore, Singapore lacks natural freshwater sources (Teo, 2019). According to a UNESCO study in 2006, Singapore was rated 170th out of 190 nations in terms of freshwater availability (Khoo, 2009). Singapore is only expected to be able to cover 5% of its national water needs independently (Paramitha, 2023).
These conditions encourage Singapore to pursue water sustainability. Water sustainability refers to the availability of water for domestic, agricultural, and industrial purposes (Robeco, 2023). Singapore's water sustainability strategy is known as "Four National Taps" and it includes (PUB Singapore's National Water Agency, 2015):
1. utilizing used water through the NEWater program;
2. utilizing rainwater through the construction of reservoirs equipped with integrated drainage channels;
3. utilizing sea water through water desalination; and
4. importing clean water from Malaysia.
The NEWater program is one of Singapore's water sustainability pillars. The NEWater program has resulted in five plants, including the NEWater Visitor Centre (PUB Singapore's National Water Agency, 2023). The NEWater program met 40% of Singapore's water needs in 2018 (Malik, 2021). The majority of the water produced by NEWater is used for industrial and air conditioning applications in wafer fabrication plants, industrial estates, and commercial buildings, according to PUB Singapore's National Water Agency (2023). During the dry season, a small part will be added to Singapore’s reservoirs to blend with raw water. Before being provided to consumers as tap water, raw water from the reservoir will be processed.
The NEWater program not only helps to increase water availability in Singapore, but it also aims to improve people's attitudes towards the usage of reclaimed water. This serves to prepare the community in the event that NEWater becomes Singapore's primary source of drinking water in the future (Listyasari, 2012). The reason for this is that NEWater is predicted to cover 55% of Singapore's water needs by 2060 (Malik, 2021). Before introducing NEWater to the public, PUB conducted a series of educational initiatives emphasizing the strictness of the used water manufacturing process and the safety of the treated water for drinking. Various stakeholders, including the government, community leaders, water specialists, the business world, and schools, are involved in the campaign process (Listyasari, 2012; PUB Singapore's National Water Agency, 2016). The Singapore government is attempting to provide sustainable education through the creation of the NEWater Visitor Centre. The presence of a cutting-edge water museum that provides interactive tours and varied relevant training can help to ensure continuous public understanding and support (PUB Singapore's National Water Agency, 2016).
​​​​​​​​​​​​​​
Figure 4. Activities in NEWater Visitor Centre (Howsy, 2021; Kronpaiboon, 2023; Moriyama, 2017)
That is a description of the NEWater Visitor Centre, as a component of the NEWater program. Hopefully, Indonesia can adopt Singapore's policy of supporting water sustainability through the NEWater Visitor Centre and the NEWater program to improve water supply in the future.
Sources:
1. Khoo, T.C. (2009): Singapore Water: Yesterday, Today and Tomorrow, obtained through the internet site: https://link.springer.com/chapter/10.1007/978-3-540-89346-2_12.
2. Listyasari, Maraita (2012): Belajar Mengelola Air Buangan dari Singapura, obtained through the internet site: https://www.nawasis.org/portal/artikel/read/belajar-mengelola-air-buangan-dari-singapura-maraita-listyasari-/51000.
3. Malik, Tania (2021): Water Sustainability in Singapore, obtained through the internet site: https://watercenter.sas.upenn.edu/splash/water-sustainability-singapore.
4. PUB Singapore’s National Water Agency (2015): NEWater: The Singapore Water Story, obtained through the internet site: https://www.youtube.com/watch?v=5BGUT7BjPl0&t=62s.
5. PUB Singapore’s National Water Agency (2016): NEWater: A Singapore Success Story, obtained through the internet site: https://www.youtube.com/watch?v=DWWU-8_4wu0.
6. PUB Singapore’s National Water Agency (2022): Journey of NEWater, obtained through the internet site: https://www.pub.gov.sg/watersupply/fournationaltaps/newater.
7. PUB Singapore’s National Water Agency (2023): NEWater Production Process, obtained through the internet site: https://beta.pub.gov.sg/Public/WaterLoop/OurWaterStory/NEWater.
8. Paramitha, Diandra (2023): Dilema Air Singapura: Negara Maju yang Masih Mengimpor Air, obtained through the internet site: https://www.goodnewsfromindonesia.id/2023/05/25/dilema-air-singapura-negara-maju-yang-masih-mengimpor-air.
9. Robeco (2023): Water Sustainability, obtained through the internet site: https://www.robeco.com/en-int/glossary/sustainable-investing/water-sustainability.
10. Tan, T.P and Rawat, S. (2018): NEWater in Singapore, obtained through the internet site: https://www.globalwaterforum.org/2018/01/15/newater-in-singapore/.
11. Teo, En Qi (2019): Singapore’s Solution to Water Scarcity: NEWater, obtained through the internet site: https://savethewater.org/singapores-solution-to-water-scarcity-newater/.
Photo Credits:
1. Howsy (2021) in Google Photos.
2. Kronpaiboon, Sanchai (2023) in Google Photos.
3. Moriyama, Masaaki (2017) in Google Photos.
4. PUB Singapore’s National Water Agency (2016): NEWater: A Singapore Success Story, obtained through the internet site: https://www.youtube.com/watch?v=DWWU-8_4wu0.
5. PUB Singapore’s National Water Agency (2023): NEWater Production Process, obtained through the internet site: https://beta.pub.gov.sg/Public/WaterLoop/OurWaterStory/NEWater.
6. PUB Singapore’s National Water Agency (2023): Used Water Treatment Process, obtained through the internet site: https://www.pub.gov.sg/usedwater/treatment/usedwatertreatmentprocess.
Written by:
Deviana Matudilifa Yusuf
Translated by:
Lely Lydia Rahmawati
#nuwsp #ditairminun #ciptakarya #watersupply
#watersustainability #keberlanjutanair #singapura #singapore #newater #newatervisitorcentre #daurulangair #airbuangan #usedwater #waterreclamation
Available in English
32/A-NUWSP/September/2023
Pada tahun 2022 melalui program National Urban Water Supply Project (NUWSP), Kabupaten Ciamis mendapatkan bantuan Stimulan untuk Optimalisasi Sistem Penyediaan Air Minum (SPAM) Ciamis, yang meliputi tiga kecamatan, yaitu Kecamatan Baregbeg, Ciamis, dan Cijeungjing. Lingkup kegiatan NUWSP di Kabupaten Ciamis meliputi: (a) pengadaan dan pemasangan pipa High Density Poly Ethylene (HDPE) untuk jaringan distribusi utama (JDU); (b) pengadaan dan pemasangan meter induk distribusi (electromagnetic flowmeter) dan data logger; (c) pengadaan dan pemasangan aksesoris pipa; serta (d) pengadaan dan pemasangan jembatan pipa.
Gambar 1. (a) Pipa HDPE serta (b) electromagnetic flowmeter dan data logger untuk optimalisasi SPAM Ciamis
Pekerjaan fisik NUWSP di Kabupaten Ciamis dimulai sejak 21 Mei 2022 dan telah selesai pada 31 Maret 2023. Setelah dibangun, infrastruktur penyediaan air minum tersebut akan didukung keberfungsiannya dengan Sambungan Rumah (SR), yang merupakan salah satu outcome program NUWSP. Saat ini, program NUWSP di Kabupaten Ciamis berada dalam tahap pemenuhan target SR, sesuai dengan komitmen Pemerintah Kabupaten Ciamis dalam Nota Kesepakatan bersama Direktur Jenderal Cipta Karya, Kementerian PUPR. Melalui program NUWSP, Pemerintah Kabupaten Ciamis berkomitmen untuk mengembangkan cakupan layanan air minum dengan menambah 4.189 SR hingga tahun 2024. Untuk memenuhi target tersebut, Pemerintah Kabupaten Ciamis melalui Perumda Air Minum Tirta Galuh melakukan beberapa strategi yang meliputi: (a) pemberlakuan tarif promo pemasangan SR dan (b) sosialisasi kepada masyarakat.
Pemberlakuan Tarif Promo Pemasangan SR
Perumda Air Minum Tirta Galuh memberlakukan tarif promo untuk menjaring minat masyarakat dalam pemasangan SR di lingkungan SPAM Ciamis. Masyarakat mendapatkan pemotongan tarif pemasangan SR yang semula sebesar Rp 1.400.000 menjadi sebesar Rp 750.000. Kebijakan ini sesuai dengan Surat Keputusan (SK) Direktur Perumda Air Minum Tirta Galuh 22/kpts/PERUMDA/Cms-/X/2022 yang mulai diberlakukan pada 15 Oktober 2022. Sebagai media informasi kepada masyarakat terkait promo tersebut, Perumda Air Minum Tirta Galuh memasang banner di 10 titik keramaian, menyebarkan brosur, serta membuat unggahan di media sosial.
Gambar 2. Penyebaran informasi tarif promo pemasangan SR melalui (a) pemasangan banner; (b) penyebaran brosur; dan (c) unggahan di media sosial
Sosialisasi kepada Masyarakat
Perumda Air Minum Tirta Galuh melakukan beragam jenis sosialisasi kepada masyarakat di lingkup program NUWSP Kabupaten Ciamis. Kegiatan yang dilakukan terdiri dari sosialisasi door to door, pembukaan stand di ruang publik, serta kerja sama dengan instansi lain. Sosialisasi door to door merupakan langkah awal yang dilakukan oleh Perumda Air Minum Tirta Galuh untuk mengenalkan program NUWSP. Harapannya, apabila masyarakat sudah mengenal program NUWSP, masyarakat dapat berminat untuk memasang SR karena program NUWSP dapat memfasilitasi perbaikan pelayanan air minum di beberapa wilayah yang semula belum optimal. Perumda Air Minum Tirta Galuh juga melakukan pembukaan stand di ruang publik untuk menginformasikan seputar tarif promo pemasangan SR. Pembukaan stand dilakukan pada beberapa kegiatan seperti car free day (CFD) di Lapangan Sirkuit BMX Ciamis dan Taman Lokasana Ciamis serta kegiatan Ciamis Creative Festival di Ciamis Islamic Center. Kegiatan sosialisasi juga dilakukan dengan kerja sama antara Perumda Air Minum Tirta Galuh, Dinas Kesehatan, serta Dinas Perumahan Rakyat, Kawasan Permukiman, dan Lingkungan Hidup (DPRKPLH) Kabupaten Ciamis. Sosialisasi dilakukan kepada masyarakat untuk mengedukasi terkait pentingnya air dengan kualitas yang baik bagi keberlangsungan hidup manusia.
Gambar 3. Kegiatan sosialisasi melalui (a) kerja sama dengan instansi lain dan (b) pembukaan stand di ruang publik
Itulah beberapa strategi yang dilakukan oleh Perumda Air Minum Tirta Galuh dalam pemenuhan target pemasangan Sambungan Rumah (SR) NUWSP di Kabupaten Ciamis. Strategi ini memberikan pengaruh yang baik terhadap pengembangan cakupan layanan di SPAM Ciamis, salah satu contohnya yaitu pada pemberlakuan tarif promo. Pemberlakuan tarif promo ternyata dapat meningkatkan laju pertumbuhan pelanggan. Pada tahun 2022, rata-rata laju pertumbuhan pelanggan saat kondisi normal (tanpa tarif promo) yaitu sebesar 22 SR/bulan. Di akhir tahun, angka ini perlahan meningkat hingga mencapai 92 SR/bulan ketika tarif promo mulai diberlakukan pada 24 Oktober – 25 Desember 2022. Selain pemberlakuan tarif promo, pembukaan stand di ruang publik juga memberikan dampak positif. Selama kegiatan Ciamis Creative Festival misalnya, Perumda Air Minum Tirta Galuh memberikan souvenir serta voucher pembayaran tagihan air sebesar Rp 50.000 bagi para calon pelanggan yang telah melakukan registrasi. Dampaknya, minat masyarakat untuk memasang SR meningkat, terutama pada periode berlangsungnya stand di acara Ciamis Creative Festival.
Gambar 4. Flyer untuk menarik minat masyarakat selama pembukaan stand berlangsung
Semoga dengan diterapkannya strategi tersebut secara konsisten, target pemasangan Sambungan Rumah (SR) NUWSP di Kabupaten Ciamis dapat terpenuhi sehingga program NUWSP dapat segera dirasakan manfaatnya secara luas oleh masyarakat.
Sumber:
1. Dokumentasi NUWSP.
2. Dokumentasi Perumda Air Minum Tirta Galuh Kabupaten Ciamis.
Ditulis oleh:
Dwi Septiani Indrawanti
Gigih Perkasa
Deviana Matudilifa Yusuf
The Strategy of Tirta Galuh Drinking Water Perumda in Meeting NUWSP Household Connection (SR) Targets in Ciamis Regency
Ciamis Regency received a Seed Grant for Optimizing the Ciamis Drinking Water Supply System (SPAM) in 2022 through the National Urban Water Supply Project (NUWSP), which encompasses three subdistricts, namely Baregbeg, Ciamis, and Cijeungjing. In Ciamis Regency, NUWSP activities include: (a) procurement and installation of HDPE pipes for the main distribution network (JDU); (b) procurement and installation of main distribution water meters (electromagnetic flowmeters) and data loggers; (c) procurement and installation of pipe accessories; and (d) procurement and installation of pipe bridges.
Figure 1. (a) HDPE pipe and (b) electromagnetic flowmeter and data logger for optimizing Ciamis SPAM
Construction work of the NUWSP program in Ciamis Regency began on May 21, 2022, and was finished on March 31, 2023. Once completed, the drinking water supply infrastructure will be functionally supported by household connection (SR), that is one of the NUWSP program outcomes. Currently, the NUWSP program in Ciamis Regency is nearing completion of the SR target, as stated in the Memorandum of Agreement between the Ciamis Regency Government and the Director General of Human Settlements, Ministry of PUPR. The Ciamis Regency Government has committed to extending the coverage of drinking water services by adding 4.189 SRs through the NUWSP program by 2024. To achieve this goal, the Ciamis Regency Government, through Tirta Galuh Drinking Water Perumda (local government-owned water utility), is employing a number of tactics, including (a) implementing promotional pricing for installing new SRs and (b) socialization to the community.
Implementation of Promotional Pricing for SR Installation
Tirta Galuh Drinking Water Perumda is implementing promotional pricing to entice new customers in the area of Ciamis SPAM to install SR. The SR installation rate, which was initially IDR 1.400.000, was reduced to IDR 750.000. This policy conforms to the Director of Tirta Galuh Drinking Water Perumda's Decree (SK) 22/kpts/PERUMDA/Cms-/X/2022, which went into effect on October 15, 2022. As a means of informing the public about this promotion, Tirta Galuh Drinking Water Perumda displayed banners in ten popular locations, distributed brochures, and made social media posts.
Figure 2. Dissemination of information on SR installation promo rates through (a) banner installation; (b) brochure distribution; and (c) social media post
Socialization to the Community
Tirta Galuh Drinking Water Perumda conducted numerous types of community outreach as part of the Ciamis Regency NUWSP program. The activities included door-to-door outreach, setting up stands in public spaces, and collaboration with other organizations. The first measure taken by Tirta Galuh Drinking Water Perumda to introduce the NUWSP program was door-to-door outreach. If the community is familiar with the NUWSP program, it is hoped that the community will be interested in installing SR because the NUWSP program can facilitate improvements in drinking water services in a number of previously suboptimal areas. Additionally, Tirta Galuh Drinking Water Perumda opened a stand in public spaces to provide promotional pricing information for SR installation. The inauguration of the booth took place at a number of events, including car-free day (CFD) at the Ciamis BMX Circuit Field and Ciamis Lokasana Park as well as Ciamis Creative Festival events at the Ciamis Islamic Centre. In collaboration with Tirta Galuh Drinking Water Perumda, the Health Service, and the Public Housing, Settlement Areas, and Environment Service (DPRKPLH) of Ciamis Regency, socialization activities were also conducted. In that event, the public is educated about the significance of high-quality water to human life.
Figure 3. Socialization activities through (a) collaboration with other agencies and (b) opening stands in public spaces
These are some of the strategies utilized by Tirta Galuh Drinking Water Perumda in order to achieve its goal of installing NUWSP Household Connections (SR) in the Ciamis Regency. This strategy has had a positive impact on Ciamis SPAM's expansion of service coverage, as evidenced by the implementation of promotional pricing. Implementing promotional pricing can increase the rate of customer expansion. In 2022, the average consumer growth rate (excluding promotional rates) was 22 SR per month. At the end of the year, this figure increased gradually until it reached 92 SR/month on 24 October - 25 December 2022, when the promotional pricing went into effect. In addition to employing promotional pricing, establishing stands in public places also had a positive effect. During the activities of the Ciamis Creative Festival, for instance, Tirta Galuh Drinking Water Perumda provided prospective customers with souvenirs and vouchers for water payment totaling IDR 50.000. Consequently, public interest in implementing SR increased, particularly during the Ciamis Creative Festival stand period.
Figure 4. Flyer to attract public interest during the stand opening
Hopefully, by consistently implementing this strategy, the goal of installing NUWSP Household Connections (SR) in Ciamis Regency will be met, and the community will soon reap the benefits of the NUWSP program.
Sources:
1. NUWSP Documentation.
2. Documentation of Tirta Galuh Drinking Water Perumda, Ciamis Regency.
Written by:
Dwi Septiani Indrawanti
Gigih Perkasa
Deviana Matudilifa Yusuf
Translated by:
Lely Lydia Rahmawati
#nuwsp #ditairminun #ciptakarya #watersupply
#nuwspciamis #kabupatenciamis #pemdaciamis #pdamciamis #tirtagaluh #strategi #strategy #sambunganrumah #sr #householdconnection #airminum #drinkingwater
Available in English
31/B-NUWSP/September/2023
Belakangan ini, ribuan warga Bekasi Utara mengeluhkan sulitnya mendapatkan air. Sejak hari Jum’at 15 September 2023 lalu, pasokan air dari PDAM setempat sempat dihentikan sementara selama beberapa hari. Akibatnya, sekitar 40 ribu warga tidak mendapatkan air. Layanan air ini kemudian mulai beroperasi kembali pada hari Senin 18 September 2023. Meskipun sudah beroperasi, layanan air belum berjalan normal karena kualitas dan kuantitasnya terganggu. Ragil Wibowo, salah satu warga yang terdampak, mengemukakan bahwa saat ini air masih berbau dan tidak layak dipakai. Tak hanya itu, Ali Imam Faryadi selaku Direktur Utama Perumda Tirta Patriot memperkirakan bahwa pihaknya baru bisa memproduksi air sebesar 315 liter/detik, yang setara dengan 60% dari kondisi normal. Oleh karena itu, tekanan air yang diterima warga lebih kecil dari biasanya (Andayani, 2023; Andre dan Ihsanuddin, 2023).
Kondisi tersebut terjadi karena sumber air baku yang digunakan untuk menyuplai air ke warga tercemar limbah industri. Ali mengatakan bahwa air mulai tercemar limbah sejak 13 September 2023. Pencemaran ini dapat dilihat secara fisik karena air di Kali Bekasi masih berwarna hitam pekat dan berbau menyengat (Andayani, 2023; Andre dan Ihsanuddin, 2023; iNews, 2023). Foto udara kondisi Kali Bekasi dapat dilihat pada gambar 1.
Gambar 1. Foto udara kondisi Kali Bekasi (Tempo, 2023)
Akibatnya, warga setempat masih merasakan kesulitan air. Saat ini, sebagian warga mengandalkan bantuan air dari pemerintah untuk memenuhi kebutuhan hariannya. Sebagian lainnya memenuhi kebutuhan air dengan membeli dari warga maupun pihak lain (Liputan 6, 2023).
Gambar 2. Ilustrasi warga yang mengantre untuk mendapatkan bantuan air (Surjaya, 2021)
Untuk menanggulangi masalah ini, Pemerintah Kota Bekasi bersama Perumda Tirta Patriot melakukan sejumlah langkah inisiatif. Berdasarkan Kompas (2023), beberapa langkah yang dilakukan di antaranya:
1. Mengoptimalkan air baku yang masih dapat diproduksi;
2. Mencari sumber air baku lain, salah satunya berasal dari Kalimalang;
3. Menyalurkan bantuan air ke warga; dan
4. Melakukan inspeksi untuk mencari pelaku pembuang limbah.
Fenomena krisis air di Kota Bekasi membantu kita untuk merefleksikan bahwa pencemaran air baku merupakan hal yang tak terelakkan saat ini. Air sungai, air tanah, air danau, dan sumber air baku lainnya dapat tercemar oleh limbah yang dihasilkan manusia. Pencemaran bisa semakin memburuk karena saat ini pertumbuhan penduduk dan perkembangan industri semakin meningkat. Oleh karena itu, hal yang dapat kita lakukan untuk memitigasi krisis air akibat pencemaran yaitu dengan menjadi pribadi yang lebih bertanggung jawab terhadap limbahnya, baik sebagai individu maupun sebagai pelaku industri.
Sumber:
1. Adayani, Dwi (2023): Kali Bekasi Tercemar Limbah dan Bau, Suplai Air Bersih Sempat Terhenti, diperoleh melalui situs internet: https://news.detik.com/berita/d-6941587/kali-bekasi-tercemar-limbah-dan-bau-suplai-air-bersih-sempat-terhenti.
2. Andre, Joy dan Ihsanuddin (2023): Dua Minggu Lebih Tercemar Limbah, Air di Kali Bekasi Masih Hitam dan Berbau Busuk, diperoleh melalui situs internet: https://megapolitan.kompas.com/read/2023/09/20/19170781/dua-minggu-lebih-tercemar-limbah-air-di-kali-bekasi-masih-hitam-dan.
3. iNews (2023): Sepekan Kali Tercemar Limbah Industri, Warga Bekasi Utara Krisis Air Bersih, diperoleh melalui situs internet: https://www.youtube.com/watch?v=KkBgnvwOcoA.
4. Kompas (2023): Warga Krisis Air Bersih Akibat Kali Bekasi Tercemar, Pemkot Janji Pipanisasi Air Baku Jatiluhur, diperoleh melalui situs internet: https://www.youtube.com/watch?v=x8YMWtv1b88.
5. Liputan 6 (2023): Air Kali Bekasi Tercemar Limbah Industri, Sebabkan Krisis Air Bersih, diperoleh melalui situs internet: https://www.youtube.com/watch?v=tSkG_74wjpI.
Kredit Foto:
1. Pambudhy, Agung (2023): 5 Fakta Kali Bekasi Tercemar Bikin Tersendat Pasokan Air ke Warga, diperoleh melalui situs internet: https://news.detik.com/berita/d-6942354/5-fakta-kali-bekasi-tercemar-bikin-tersendat-pasokan-air-ke-warga.
2. Surjaya, A.M. (2023): Ribuan Warga Bekasi di 9 Kecamatan Kesulitan Air Bersih, Sungai Tercemar Limbah Industri, diperoleh melalui situs internet: https://metro.sindonews.com/read/535104/171/ribuan-warga-bekasi-di-9-kecamatan-kesulitan-air-bersih-sungai-tercemar-limbah-industri-1631084988.
3. Tempo (2023): Kondisi Kali Bekasi yang Tercemar, Warna Air Jadi Hitam Pekat, diperoleh melalui situs internet: https://foto.tempo.co/read/108546/kondisi-kali-bekasi-yang-tercemar-warna-air-jadi-hitam-pekat.
Ditulis oleh:
Deviana Matudilifa Yusuf
Bekasi River Pollution, A Water Crisis Impacting Countless Residents
Recently, thousands of residents in North Bekasi have expressed their complaints regarding the difficulty of accessing drinking water. Since Friday, September 15, 2023, drinking water supply from local government-owned water utility (Perumda Tirta Patriot) was temporarily stopped for several days. Consequently, a population of approximately 40,000 individuals was deprived of access to drinking water. The water service continued its operations on Monday, September 18, 2023. Despite being in operation, the water service was experiencing abnormal functioning due to its quality and quantity disruptions. According to Ragil Wibowo, a resident who has been impacted by the situation, the distributed water exhibits an unpleasant odor and is deemed unsuitable for utilization. In addition, Ali Imam Faryadi, serving as the Principal Director of Perumda Tirta Patriot, approximates that the organization is capable of producing a volume of 315 liters of water per second, representing 60% of the standard capacity. Consequently, the residents experienced lower water pressure than the typical levels (Andayani, 2023; Andre and Ihsanuddin, 2023).
The condition arises due to the presence of industrial wastewater in the raw water sources utilized for supplying water to the inhabitants. According to Ali, the contamination of water with industrial wastewater has started since September 13, 2023. The presence of pollution is evident through observable physical manifestations, such as the persistently darkened appearance and the pungent smell of the water in the Bekasi River (Andayani, 2023; Andre and Ihsanuddin, 2023; iNews, 2023). Figure 1 displays an aerial photograph showing the current condition of Bekasi River.
Figure 1. Aerial photograph of Bekasi River condition (Tempo, 2023)
Therefore, the local residents continue to face water scarcity. At present, certain individuals depend on governmental water aid in order to fulfill their daily needs. Alternative methods of fulfilling water needs include the acquisition of water from local residents or external entities (Liputan 6, 2023).
Figure 2. Illustration of residents queuing to get water aid (Surjaya, 2021)
Several proactive measures were taken by the Government of Bekasi City and Perumda Tirta Patriot to address this issue. Based on Kompas (2023), several steps taken include:
1. Optimizing raw water that can still be produced;
2. Exploring alternative raw water sources, including raw water source from Kalimalang;
3. Distribute water aid to residents; and
4. Conduct inspections to look for the industrial wastewater dumpers.
The water crisis in Bekasi City encourages us to consider the reality that raw water pollution is currently unavoidable. River water, groundwater, lake water, and other raw water sources can be polluted by waste produced by humans. Pollution could get worse because currently population growth and industrial development are increasing. Therefore, becoming more waste-conscious as individuals and as industrial actors is one way, we can help ease the water issue caused by pollution.
Sources:
1. Adayani, Dwi (2023): Kali Bekasi Tercemar Limbah dan Bau, Suplai Air Bersih Sempat Terhenti, obtained through the internet site: https://news.detik.com/berita/d-6941587/kali-bekasi-tercemar-limbah-dan-bau-suplai-air-bersih-sempat-terhenti.
2. Andre, Joy and Ihsanuddin (2023): Dua Minggu Lebih Tercemar Limbah, Air di Kali Bekasi Masih Hitam dan Berbau Busuk, obtained through the internet site: https://megapolitan.kompas.com/read/2023/09/20/19170781/dua-minggu-lebih-tercemar-limbah-air-di-kali-bekasi-masih-hitam-dan.
3. iNews (2023): Sepekan Kali Tercemar Limbah Industri, Warga Bekasi Utara Krisis Air Bersih, obtained through the internet site: https://www.youtube.com/watch?v=KkBgnvwOcoA.
4. Kompas (2023): Warga Krisis Air Bersih Akibat Kali Bekasi Tercemar, Pemkot Janji Pipanisasi Air Baku Jatiluhur, obtained through the internet site: https://www.youtube.com/watch?v=x8YMWtv1b88.
5. Liputan 6 (2023): Air Kali Bekasi Tercemar Limbah Industri, Sebabkan Krisis Air Bersih, obtained through the internet site: https://www.youtube.com/watch?v=tSkG_74wjpI.
Photo Credits:
1. Pambudhy, Agung (2023): 5 Fakta Kali Bekasi Tercemar Bikin Tersendat Pasokan Air ke Warga, obtained through the internet site: https://news.detik.com/berita/d-6942354/5-fakta-kali-bekasi-tercemar-bikin-tersendat-pasokan-air-ke-warga.
2. Surjaya, A.M. (2023): Ribuan Warga Bekasi di 9 Kecamatan Kesulitan Air Bersih, Sungai Tercemar Limbah Industri, obtained through the internet site: https://metro.sindonews.com/read/535104/171/ribuan-warga-bekasi-di-9-kecamatan-kesulitan-air-bersih-sungai-tercemar-limbah-industri-1631084988.
3. Tempo (2023): Kondisi Kali Bekasi yang Tercemar, Warna Air Jadi Hitam Pekat, obtained through the internet site: https://foto.tempo.co/read/108546/kondisi-kali-bekasi-yang-tercemar-warna-air-jadi-hitam-pekat.
Written by:
Deviana Matudilifa Yusuf
Translated by:
Lely Lydia Rahmawati
#nuwsp #ditairminun #ciptakarya #watersupply
#pencemaran #contamination #kalibekasi #limbahindustri #airlimbah #wastewater #industrialwastewater #krisisair #watercrisis
Available in English
30/A-NUWSP/September/2023
Pipa jenis Asbestos Cement Pipe atau lebih sering dikenal sebagai pipa ACP merupakan pipa yang terbuat dari semen Portland dan serat asbes yang dicampur menjadi bubur dan diendapkan berlapis-lapis pada mandrel silinder (Ratnayaka dkk., 2009). Jenis pipa ACP sampai saat ini masih digunakan oleh penyedia air minum, salah satunya adalah PDAM Kabupaten Lebak. Pipa ACP digunakan sebagai pipa jaringan distribusi utama (JDU) oleh PDAM Kabupaten Lebak di beberapa lokasi Sistem Penyediaan Air Minum (SPAM), salah satunya untuk SPAM Rangkasbitung.
Gambar 1. Pipa Asbestos Cement Pipe atau ACP (Branch, 2021)
Menurut Kepala Bagian Perencanaan Teknik PDAM Kabupaten Lebak, Rachmat B.E., JDU SPAM Rangkasbitung yang ada saat ini merupakan JDU yang telah dibangun sejak tahun 1988. Hal ini sesuai dengan sejarah yang ada, di mana pada tahun 1988, Departemen Pekerjaan Umum melakukan serah terima pengelolaan sarana dan prasarana penyediaan air minum kepada Gubernur Jawa Barat yang selanjutnya diserahkan kepada Bupati Lebak. Pada waktu yang bersamaan, Perusahaan Daerah Air Minum (PDAM) yang semula bernama Badan Pengelola Air Minum (BPAM) didirikan, berdasarkan Perda Nomor 15 tahun 1988 tentang Pendirian Perusahaan Daerah Air Minum. Sejak saat itu, PDAM Kabupaten Lebak mengelola sarana dan prasarana penyediaan air minum, termasuk JDU yang menggunakan pipa ACP pada SPAM Rangkasbitung.
Pipa ACP yang digunakan pada JDU diperkirakan sudah berusia lebih dari 34 tahun. Oleh karena itu, pipa mulai rapuh sehingga pipa tidak dapat lagi menahan tekanan air (Rianto, 2022). Akibatnya, JDU pada SPAM Rangkasbitung sering mengalami kebocoran. Berdasarkan data PDAM Kabupaten Lebak, tingkat kehilangan air pada Bulan Mei 2022 dilaporkan sebesar 30,47%. Angka ini berada di atas standar Rencana Pembangunan Jangka Menengah Nasional (RJPMN) 2020-2024 yang menargetkan penurunan angka kehilangan air menjadi 25% pada tahun 2024 (Pokja PPAS, 2020).
Tingkat kehilangan air atau air tak berekening merupakan selisih jumlah air yang terdistribusi dengan air yang diterima pelanggan dan tercetak di rekening. Tingkat kehilangan air terbagi menjadi dua jenis, yaitu: tingkat kehilangan air fisik dan nonfisik. Tingkat kehilangan air fisik dapat disebabkan oleh (1) kebocoran pipa transmisi dan distribusi; (2) kebocoran dan luapan dari reservoir; serta (3) kebocoran di pipa hingga ke meter pelanggan. Sementara itu, tingkat kehilangan air nonfisik dapat disebabkan oleh (1) konsumsi tidak resmi; (2) ketidakakuratan meter pelanggan; dan (3) kesalahan penanganan data (PAM Jaya, 2015). Penggunaan pipa ACP yang sudah tua di PDAM Kabupaten Lebak menjadi salah satu aspek dalam memperbesar tingkat kehilangan air.
Tingginya tingkat kehilangan air dapat merugikan PDAM. Sebelum melalui proses distribusi, seluruh air yang dimiliki tentu akan diolah untuk mencapai kualitas yang diharapkan, termasuk di dalamnya air yang nantinya hilang. Oleh karena itu, PDAM tetap mengeluarkan biaya operasional untuk pengolahan maupun pendistribusian air. Sayangnya selama proses distribusi, sebagian air yang berpotensi menjadi pendapatan PDAM menghilang, baik karena kehilangan fisik maupun nonfisik. Akibatnya, pendapatan PDAM dapat menurun. Selain menurunkan pendapatan PDAM, kehilangan air yang tinggi juga dapat merugikan pelanggan karena pelayanan yang diterima oleh pelanggan menjadi kurang optimal.
Selain kebocoran pipa yang menyebabkan kehilangan air, kerapuhan pipa ACP yang sudah tua juga dapat menyebabkan terkikisnya serat-serat asbes secara perlahan. Serat-serat asbes yang terkikis dikhawatirkan terbawa oleh aliran air hingga ke pelanggan. Jika hal ini terjadi, kualitas air yang didistribusikan kepada pelanggan dapat menurun karena asbes merupakan salah satu bahan yang dapat memicu penyakit kanker (SDWF, 2017).
Gambar 2. Pekerjaan perbaikan kebocoran pipa eksisting jenis ACP (Dokumentasi PDAM Kabupaten Lebak)
Melalui Program National Urban Water Supply Project (NUWSP), PDAM Kabupaten Lebak telah merencanakan penggantian pipa ACP menjadi pipa High Density Poly Ethylene (HDPE) yang lebih aman untuk pelayanan air kepada pelangggan (Air Kami, 2022; Trilliun, 2021). Pengantian pipa ini akan dilaksakan pada beberapa titik, di antaranya: ruas Jalan Otto Iskandar Dinata, ruas Jalan Sunan Kalijaga, ruas Jalan Tirtayasa, dan ruas Jalan RT. Hardiwinangun. Penggantian pipa ACP melalui program NUWSP diharapkan mampu mengurangi tingkat kehilangan air secara fisik pada JDU sehingga dapat mengoptimalkan pengoperasian SPAM Rangkasbitung. Kondisi SPAM yang optimal juga diharapkan mampu meningkatkan pelayanan PDAM Kabupaten Lebak, khususnya pelayanan dari SPAM Rangkasbitung.
Sumber:
1. Air Kami (2022): Mengenal Pipa HDPE, Pipa yang Biasa Digunakan PDAM, diperoleh melalui situs internet: https://airkami.id/pipa-hdpe-pipa-yang-biasa-digunakan-pdam/.
2. Dokumentasi PDAM Kabupaten Lebak.
3. PAM Jaya (2015): Pengertian Tentang Non-Revenue Water, diperoleh melalui situs internet: https://www.kompasiana.com/pamjaya/54f91f5aa33311fc078b4691/pengertian-tentang-nonrevenue-water.
4. Pokja PPAS (2020): Target Penurunan Angka ATR (Air Tidak Berekening)/NRW (Non Revenue Water), diperoleh melalui situs internet: https://www.nawasis.org/portal/galeri/read/target-penurunan-angka-atr-air-tidak-berekening-nrw-non-revenue-water-/51862.
5. Ratnayaka, D. D., Brandt, M. J., dan Johnson, K. M. (2009): Pipeline Design and Construction, Water Supply, 561–598.
6. Rianto, Fajar (2022): Pipa Sering Bocor, PDAM Kota Yogyakarta Ganti Pipa Distribusi Utama, diperoleh melalui situs internet: https://timesindonesia.co.id/peristiwa-daerah/395692/pipa-sering-bocor-pdam-kota-yogyakarta-ganti-pipa-distribusi-utama.
7. SDWF (2017): Asbestos in Water and Asbestos Cement Water Pipes, diperoleh melalui situs internet: https://www.safewater.org/fact-sheets-1/2017/1/18/asbestos-in-water-and-asbestos-cement-water-pipes.
8. Trilliun (2021): Mengenal Pipa HDPE: Jenis, Fungsi, dan Keunggulannya, diperoleh melalui situs internet: https://trilliun.com/apa-itu-pipa-hdpe/.
Kredit Foto:
1. Branch, Julian (2021): Asbestos Cement Water Pipes – Should We Be Concerned?, diperoleh melalui situs internet: https://freshoutlookfoundation.org/asbestos-cement-water-pipes-should-we-be-concerned/.
Ditulis oleh:
Atika Fauziah
Fachmas Dindin Soetiar
Deviana Matudilifa Yusuf
Does the Use of ACP Pipes in Distribution Networks Increase Water Loss
Asbestos Cement Pipe or more commonly known as ACP is a pipe made from Portland cement and asbestos fiber mixed into a slurry and deposited in layers on a cylindrical mandrel (Ratnayaka et al., 2009). Lebak Regency PDAM (local government-owned water utility) is one of the drinking water providers that still uses this kind of pipe. Lebak Regency PDAM uses ACP pipes as the main distribution network (JDU) pipes in a number of Drinking Water Supply System (SPAM) locations, including Rangkasbitung SPAM.
Figure 1. Asbestos Cement Pipe or ACP (Branch, 2021)
According to Rachmat B.E., the Head of Engineering Planning Department of Lebak Regency PDAM, the current JDU of Rangkasbitung SPAM has been built since 1988. This is consistent with Lebak Regency PDAM’s history, where in 1988, the Public Works Department handed over the management of drinking water supply facilities and infrastructure to West Java Governor, and was thereafter transferred to the Regent of Lebak. At the same time, the local government-owned water utility (PDAM), formerly known as the Drinking Water Management Agency (BPAM), was founded in accordance with Local Government Regulation Number 15 of 1988 on the Establishment of PDAM. Since then, Lebak Regency PDAM has managed the drinking water facilities and infrastructure, including JDU, which uses ACP pipes at the Rangkasbitung SPAM.
The ACP pipe used in JDU is thought to be over 34 years old. As a result, the pipes become brittle and can no longer bear the water pressure (Rianto, 2022). Therefore, the JDU at Rangkasbitung SPAM is frequently leaking. According to data from Lebak Regency PDAM, the level of water loss in May 2022 was 30,47%. This percentage exceeds the 2020-2024 National Medium-Term Development Plan (RJPMN) standard, which calls for a 25% reduction in water loss by 2024 (Pokja PPAS, 2020).
The amount of water loss, also known as non-revenue water, is the difference between the amount of water distributed and the amount of water received by customers, and it is recorded on the account. There are two types of water loss: physical and nonphysical water loss. Physical water loss can be caused by (1) leaks in transmission and distribution pipes; (2) reservoir leaks and overflows; and (3) leaks in service pipes up to customer water meters. Meanwhile, nonphysical water loss can be caused by (1) informal consumption; (2) mistakes in customer water meters, and (3) data handling issues (PAM Jaya, 2015). The usage of ACP pipes that were old in Lebak Regency PDAM is one factor contributing to increased water loss.
High levels of water loss can be detrimental to PDAM. Before going through the distribution process, all raw water, including water that will be lost, surely will be processed to attain the desired quality. Consequently, PDAM continues to endure operational expenses for water treatment and distribution. Unfortunately, during the distribution process, a portion of the produced water that could potentially generate revenue for PDAM is lost due to physical or nonphysical loss. Consequently, PDAM's income may decline. In addition to decreasing PDAM income, excessive water losses can be detrimental to customers because the service they receive is substandard.
In addition to pipe leaks that result in water loss, the fragility of old ACP pipes can also lead to asbestos fiber release. It is anticipated that released asbestos fibers will be carried to customers through the water flow. Asbestos is a material that can cause cancer, so if this occurs, the quality of the water distributed to consumers could decline (SDWF, 2017).
Figure 2. Restoration work of existing ACP pipe leak (Documentation of Lebak Regency PDAM)
Through the National Urban Water Supply Project (NUWSP) program, Lebak Regency PDAM intends to replace ACP pipes with safer High Density Poly Ethylene (HDPE) pipes (Air Kami, 2022; Trilliun, 2022). This pipe replacement will take place at multiple locations, including Jalan Otto Iskandar Dinata, Jalan Sunan Kalijaga, Jalan Tirtayasa, and Jalan RT. Hardiwinangun. ACP pipe replacement through the NUWSP program is expected to reduce the amount of physical water loss in the JDU, thereby optimizing the operation of Rangkasbitung SPAM. It is anticipated that optimal SPAM operations will also enhance Lebak Regency PDAM services, particularly Rangkasbitung SPAM services.
Sources:
1. Air Kami (2022): Mengenal Pipa HDPE, Pipa yang Biasa Digunakan PDAM, obtained through the internet site: https://airkami.id/pipa-hdpe-pipa-yang-biasa-digunakan-pdam/.
2. Documentation of Lebak Regency PDAM.
3. PAM Jaya (2015): Pengertian Tentang Non-Revenue Water, obtained through the internet site: https://www.kompasiana.com/pamjaya/54f91f5aa33311fc078b4691/pengertian-tentang-nonrevenue-water.
4. Pokja PPAS (2020): Target Penurunan Angka ATR (Air Tidak Berekening)/NRW (Non Revenue Water), obtained through the internet site: https://www.nawasis.org/portal/galeri/read/target-penurunan-angka-atr-air-tidak-berekening-nrw-non-revenue-water-/51862.
5. Ratnayaka, D. D., Brandt, M. J., dan Johnson, K. M. (2009): Pipeline Design and Construction, Water Supply, 561–598.
6. Rianto, Fajar (2022): Pipa Sering Bocor, PDAM Kota Yogyakarta Ganti Pipa Distribusi Utama, obtained through the internet site: https://timesindonesia.co.id/peristiwa-daerah/395692/pipa-sering-bocor-pdam-kota-yogyakarta-ganti-pipa-distribusi-utama.
7. SDWF (2017): Asbestos in Water and Asbestos Cement Water Pipes, obtained through the internet site: https://www.safewater.org/fact-sheets-1/2017/1/18/asbestos-in-water-and-asbestos-cement-water-pipes.
8. Trilliun (2021): Mengenal Pipa HDPE: Jenis, Fungsi, dan Keunggulannya, obtained through the internet site: https://trilliun.com/apa-itu-pipa-hdpe/.
Photo Credit:
Branch, Julian (2021): Asbestos Cement Water Pipes – Should We Be Concerned?, obtained through the internet site: https://freshoutlookfoundation.org/asbestos-cement-water-pipes-should-we-be-concerned/.
Written by:
Atika Fauziah
Fachmas Dindin Soetiar
Deviana Matudilifa Yusuf
Translated by:
Lely Lydia Rahmawati
#nuwsp #ditairminun #ciptakarya #watersupply
#nuwsplebak #kabupatenlebak #pemdalebak #pdamlebak #airminum #drinkingwater #penyediaanairminum #drinkingwatersupply #ACP #NRW #ATR
Available in English
29/B-NUWSP/September/2023
Beberapa hari terakhir, hujan tak kunjung datang di sejumlah wilayah Indonesia. Hal ini menandai terjadinya puncak musim kemarau. Menurut Kepala Badan Meteorologi, Klimatologi, dan Geofisika (BMKG), Dwikorita Karnawati, musim kemarau tahun ini akan lebih kering jika dibandingkan dengan musim kemarau tahun 2020, 2021, dan 2022. BMKG bahkan memprediksi bahwa sejumlah wilayah di Indonesia akan mengalami hari tanpa hujan yang panjang tahun ini. Dwikorita juga mengungkapkan bahwa kondisi ini terjadi karena dipicu oleh fenomena El Nino (CNBC Indonesia, 2023). Apa yang dimaksud dengan El Nino dan bagaimana dampaknya terhadap ketersediaan air di Indonesia? Mari simak penjelasan berikut.
El Nino dan Mekanismenya
El Nino adalah fenomena pemanasan Suhu Muka Laut (SML) yang terjadi di Samudera Pasifik bagian tengah hingga timur di atas kondisi normalnya (Ki, 2023). Pada kondisi normal, angin berhembus dari timur (Peru, Ekuador, dan sekitarnya) ke arah barat (Indonesia dan sekitarnya). Angin yang biasa disebut angin pasat ini mendorong air hangat ke arah barat sehingga menyebabkan permukaan air di wilayah barat Samudera Pasifik menjadi lebih hangat daripada di wilayah timur. Lapisan air hangat di wilayah barat tersebut didorong oleh angin pasat ke bawah permukaan laut. Akibatnya, lapisan air lebih hangat ini terperangkap di bawah permukaan laut yang lebih dingin di wilayah timur. Ketika El Nino mulai berkembang, angin pasat melemah atau bahkan berbalik arah, sehingga menyebabkan air hangat yang sebelumnya terperangkap di bawah permukaan laut di wilayah barat naik ke permukaan. Air hangat ini kemudian mengalir ke arah timur dan menyebabkan peningkatan Suhu Muka Laut (SML) di wilayah Timur Pasifik (Ningsih, 2023; Wibawana, 2023). Ilustrasi El Nino dapat dilihat pada Gambar 1.
Gambar 1. Ilustrasi El Nino (Ningsih, 2023)
Dampak El Nino
Fenomena El Nino dapat meningkatkan potensi pertumbuhan awan di Samudera Pasifik bagian tengah hingga timur yang berdampak pada meningkatnya curah hujan di wilayah ini. Karena El Nino mengubah distribusi panas di atmosfer, dampak El Nino juga dirasakan di seluruh dunia, termasuk Indonesia. Perubahan yang ditimbulkan meliputi peningkatan suhu, perubahan pola hujan, dan anomali cuaca lainnya (Ki, 2023; Wibawana, 2023). Oleh sebab itu, El Nino kali ini membuat Indonesia mengalami kekeringan yang lebih ekstrem dan musim kemarau yang lebih panjang dari biasanya (CNBC Indonesia, 2023).
Gambar 2. Perubahan cuaca global akibat El Nino (IRI Columbia University, 2023)
BMKG memprediksi El Nino akan terjadi hingga akhir tahun 2023 dan puncaknya pada bulan Agustus-September. Indonesia mulai merasakan dampak kekeringan yang ekstrem akibat El Nino, yang ditandai dengan krisis air di berbagai wilayah. Krisis air dapat mengancam pasokan air baku untuk pemenuhan kebutuhan air harian. Sumber air baku seperti sungai, danau, dan air tanah pun mulai mengering. Fenomena ini sudah terlihat, salah satunya di Bendung Katulampa, Bogor. Di Bendung Katulampa, debit air Sungai Ciliwung mengalami penurunan, yang semula 3.500 liter/detik kini menjadi 2.700 liter/detik. Bahkan, tinggi muka air di Bendung Katulampa bernilai 0 cm sejak awal bulan Juni 2023. Penurunan debit air juga terjadi di Sungai Cisadane. Akibat penurunan debit air tersebut, Bendungan Hilir Cisadane di Tangerang mengering. Banyak pula ikan-ikan yang mati akibat fenomena ini (CNBC Indonesia, 2023; CNN Indonesia, 2023; Simorangkir, 2023).
Gambar 3. Perbandingan kondisi (a) Bendung Katulampa yang kering saat ini dengan (b) kondisi normal (Kementerian Pertanian dalam Fitri, 2023; Sholihin, 2022)
Gambar 4. Ikan yang mati di Bendungan Hilir Cisadane, Tangerang akibat kekeringan (CNBC Indonesia, 2023)
Tak hanya itu, krisis air juga dirasakan oleh warga Desa Kalong Liud, Kecamatan Nanggung, Kabupaten Bogor. Sekretaris Desa Kalong Liud mengatakan bahwa banyak sumur warga yang kering karena nyaris tak ada hujan selama tiga minggu terakhir. Untuk memenuhi kebutuhan air harian, warga mengandalkan bantuan air bersih dari kolaborasi pemerintah dan swasta (BBC, 2023). Hal serupa juga dialami oleh warga di Kecamatan Mlandingan dan Kecamatan Sumbermalang, Kabupaten Situbondo. Sebagai respon fenomena kekeringan yang terjadi, pemerintah melalui BBWS Brantas dan BPBD Kabupaten Situbondo mendistribusikan bantuan air bersih kepada warga (Kementerian PUPR, 2023).
Gambar 5. Distribusi bantuan air bersih kepada (a) warga Desa Kalong Liud, Kabupaten Bogor serta (b) warga Kecamatan Mlandingan dan Kecamatan Sumbermalang, Kabupaten Situbondo (BBC, 2023; Kementerian PUPR, 2023)
Kita telah mengetahui bagaimana dampak El Nino terhadap ketersediaan air. Menurunnya debit air sungai dan mengeringnya air tanah pada sumur warga akibat El Nino, menandakan bahwa krisis air telah menjadi ancaman saat ini. Untuk beradaptasi dengan kondisi tersebut, beberapa hal yang dapat kita lakukan yaitu:
1. Melakukan efisiensi penggunaan air;
2. Membangun, memperbaiki, dan/atau mengoptimalkan infrastruktur pengelolaan air seperti embung, dam parit, sumur resapan, dan lain-lain; serta
3. Bersikap proaktif dalam membantu pemerintah untuk mendistribusikan bantuan air bersih.
Sumber:
1. BBC (2023): El Nino: Beberapa Daerah di Indonesia Mulai Alami Kelangkaan Air Bersih, diperoleh melalui situs internet: https://www.bbc.com/indonesia/articles/cydgj76p626o.
2. CNBC Indonesia (2023): BMKG Ingatkan Petaka El Nino: Tak Ada Hujan Sampai Oktober, diperoleh melalui situs internet: https://www.cnbcindonesia.com/news/20230803115518-4-459803/bmkg-ingatkan-petaka-el-nino-tak-ada-hujan-sampai-oktober.
3. CNBC Indonesia (2023): BMKG Ingatkan 4 Bahaya Petaka El Nino, Ini Dia, diperoleh melalui situs internet: https://www.cnbcindonesia.com/news/20230804120026-4-460226/bmkg-ingatkan-4-bahaya-petaka-el-nino-ini-dia.
4. CNBC Indonesia (2023): El Nino Datang, Waspada Krisis Air Mengancam!, diperoleh melalui situs internet: https://www.youtube.com/watch?v=Muow32rO2Qw.
5. CNN Indonesia (2023): Sampai Kapan Efek El Nino Bertahan di Indonesia Tahun ini?, diperoleh melalui situs internet: https://www.cnnindonesia.com/teknologi/20230803102452-199-981342/sampai-kapan-efek-el-nino-bertahan-di-indonesia-tahun-ini.
6. Kementerian PUPR (2023): Pendistribusian Bantuan Air Bersih di Kecamatan Mlandingan dan Kecamatan Sumbermalang Kabupaten Situbondo, diperoleh melalui situs internet: https://sda.pu.go.id/balai/bbwsbrantas/post/detail/pendistribusian_bantuan_air_bersih_di_kecamatan_mlandingan_dan_kecamatan_sumbermalang_kabupaten_situbondo.
7. Ki, Max (2023): Apa Itu El Nino? Dampak dan Cara Mengantisipasinya, diperoleh melalui situs internet: https://umsu.ac.id/berita/apa-itu-el-nino-dampak-dan-cara-mengantisipasinya/.
8. Ningsih, Suprapti (2023): Dampak El Nino dan La Nina Terhadap Iklim di Indonesia, diperoleh melalui situs internet: https://www.smam3sda.sch.id/berita/detail/980277/dampak-el-nino-dan-la-nina-terhadap-iklim-di-indonesia/.
9. Simorangkir, Hendrik (2023): Bendungan Cisadane Mengering, diperoleh melalui situs internet: https://www.metrotvnews.com/read/KvJCBxGq-bendungan-cisadane-mengering.
10. Wibawana, W.A. (2023): Apa Itu El Nino? Ini Pengertian, Dampak, dan Bedanya dengan La Nina, diperoleh melalui situs internet: https://news.detik.com/berita/d-6758231/apa-itu-el-nino-ini-pengertian-dampak-dan-bedanya-dengan-la-nina.
Kredit Foto:
1. Fitri, Dera (2023): Bendungan Katulampa Kering, Air Diprioritaskan untuk Pertanian, diperoleh melalui situs internet: https://www.viva.co.id/siaran-pers/1623311-bendungan-katulampa-kering-air-diprioritaskan-untuk-pertanian.
2. IRI Columbia University (2023): What Changes in Rainfall are Typical during El Niño?, diperoleh melalui situs internet: http://iridl.ldeo.columbia.edu/maproom/IFRC/FIC/elninorain.html.
3. Sholihin, Muchamad (2022): Status Bendung Katulampa Normal Siang Ini, Tinggi Muka Air 30 cm, diperoleh melalui situs internet: https://news.detik.com/berita/d-6390499/status-bendung-katulampa-normal-siang-ini-tinggi-muka-air-30-cm.
4. Tempo (2012): Krisis Air di Banyumas Meluas, diperoleh melalui situs internet: https://nasional.tempo.co/read/427663/krisis-air-di-banyumas-meluas.
Ditulis oleh:
Deviana Matudilifa Yusuf
El Nino Occurs, Water Crisis Becomes a Threat
Rain has not fallen in several parts of Indonesia in recent days. This marks the peak of the dry season. According to Dwikorita Karnawati, the Head of the Meteorological, Climatological, and Geophysical Agency (BMKG), this year's dry season will be drier than the dry seasons of 2020, 2021, and 2022. BMKG even expects that a number of Indonesian regions will have days without rain this year. Dwikorita further revealed that this condition arose as a result of the El Nino phenomenon (CNBC Indonesia, 2023). What is El Nino, and how does it affect water supply in Indonesia? Let's look at the following explanation.
El Nino and Its Mechanisms
El Nino is a warming phenomenon of Sea Surface Temperature (SML) that occurs above normal circumstances in the middle to eastern Pacific Ocean (Ki, 2023). Normally, the wind blows from the east (Peru, Ecuador, and adjacent areas) to the west (Indonesia and surrounding areas). These winds, known as trade winds, push warm water westward, causing the ocean surface in the western Pacific Ocean warmer than in the eastern part. The trade winds push this layer of warm water beneath the sea surface in the western region. As a result, in the eastern region, this layer of warmer water is confined beneath the cooler sea surface. When El Nino develops, the trade winds weaken or even reverse direction, allowing warm water stored beneath the sea surface in western regions to come to the surface. This warm water then moves eastward, raising Sea Surface Temperature (SML) in the Eastern Pacific (Ningsih, 2023; Wibawana, 2023). Figure 1 depicts an illustration of El Nino.
Figure 1. Illustration of El Nino (Ningsih, 2023)
The Impact of El Nino
El Nino can increase the probability of cloud development in the central to eastern Pacific Ocean, resulting in more rainfall in this region. Because El Nino alters the distribution of heat in the atmosphere, its effects are felt all across the world, including Indonesia. Rising temperatures, shifting rain patterns, and other meteorological abnormalities are among the consequences (Ki, 2023; Wibawana, 2023). As a result of El Nino this time, Indonesia had a more severe drought and a longer dry season than typical (CNBC Indonesia, 2023).
Figure 2. Global weather changes due to El Nino (IRI Columbia University, 2023)
El Nino is expected to occur through the end of 2023, peaking in August-September, according to BMKG. Indonesia is beginning to suffer from the effects of El Nino's unprecedented drought, which is marked by water shortages in several locations. A water crisis can jeopardize raw water sources, making it difficult to meet daily water needs. Raw water sources such as rivers, lakes, and groundwater are drying up. This phenomenon has been observed, with one example being at Katulampa Weir in Bogor. At Katulampa Weir, Ciliwung River's discharge has decreased from 3.500 liters per second to 2.700 liters per second. Since the beginning of June 2023, the water level at Katulampa Weir has been 0 cm. A drop in water discharge has also been seen in Cisadane River. Tangerang's Cisadane Downstream Dam dried out as a result of the decrease in water discharge. As a result of this phenomenon, many fish died (CNBC Indonesia, 2023; CNN Indonesia, 2023; Simorangkir, 2023).
Figure 3. Comparison of the current dry condition of (a) Katulampa Weir with (b) normal conditions (Ministry of Agriculture in Fitri, 2023; Sholihin, 2022)
Figure 4. Drought-related fish deaths in Tangerang's Cisadane Downstream Dam (CNBC Indonesia, 2023)
The water shortage also affects residents of Kalong Liud Village in Nanggung District, Bogor Regency. Kalong Liud’s village secretary reported that many private wells had run dry due to the lack of rain during the past three weeks. Residents rely on clean water support from the government and private collaboration (BBC, 2023) to meet their daily water needs. Residents from Mlandingan and Sumbermalang districts, Situbondo Regency shared a similar experience. Ministry of PUPR (2023) reports that the government provided clean water assistance to communities through BBWS Brantas and BPBD Situbondo Regency in response to the drought problem.
Figure 5. Distribution of clean water assistance to (a) residents of Kalong Liud Village, Bogor Regency and (b) residents of Mlandingan District and Sumbermalang District, Situbondo Regency (BBC, 2023; Ministry of PUPR, 2023)
We already understand how El Nino affects water availability. Because of El Nino, river water discharge has decreased and groundwater in inhabitants' private wells has dried up, indicating that the water crisis has become a current threat. Several things we can take to adjust to these conditions include:
1. Conduct out water usage efficiency;
2. Construct, maintain, and/or optimize water management infrastructure such as reservoirs, ditch dams, infiltration wells, and so on;
3. Be proactive in helping the government to distribute clean water assistance.
Sources:
1. BBC (2023): El Nino: Beberapa Daerah di Indonesia Mulai Alami Kelangkaan Air Bersih, obtained through the internet site: https://www.bbc.com/indonesia/articles/cydgj76p626o.
2. CNBC Indonesia (2023): BMKG Ingatkan Petaka El Nino: Tak Ada Hujan Sampai Oktober, obtained through the internet site: https://www.cnbcindonesia.com/news/20230803115518-4-459803/bmkg-ingatkan-petaka-el-nino-tak-ada-hujan-sampai-oktober.
3. CNBC Indonesia (2023): BMKG Ingatkan 4 Bahaya Petaka El Nino, Ini Dia, obtained through the internet site: https://www.cnbcindonesia.com/news/20230804120026-4-460226/bmkg-ingatkan-4-bahaya-petaka-el-nino-ini-dia.
4. CNBC Indonesia (2023): El Nino Datang, Waspada Krisis Air Mengancam!, obtained through the internet site: https://www.youtube.com/watch?v=Muow32rO2Qw.
5. CNN Indonesia (2023): Sampai Kapan Efek El Nino Bertahan di Indonesia Tahun ini?, obtained through the internet site: https://www.cnnindonesia.com/teknologi/20230803102452-199-981342/sampai-kapan-efek-el-nino-bertahan-di-indonesia-tahun-ini.
6. Ministry of PUPR (2023): Pendistribusian Bantuan Air Bersih di Kecamatan Mlandingan dan Kecamatan Sumbermalang Kabupaten Situbondo, obtained through the internet site: https://sda.pu.go.id/balai/bbwsbrantas/post/detail/pendistribusian_bantuan_air_bersih_di_kecamatan_mlandingan_dan_kecamatan_sumbermalang_kabupaten_situbondo.
7. Ki, Max (2023): Apa Itu El Nino? Dampak dan Cara Mengantisipasinya, obtained through the internet site: https://umsu.ac.id/berita/apa-itu-el-nino-dampak-dan-cara-mengantisipasinya/.
8. Ningsih, Suprapti (2023): Dampak El Nino dan La Nina Terhadap Iklim di Indonesia, obtained through the internet site: https://www.smam3sda.sch.id/berita/detail/980277/dampak-el-nino-dan-la-nina-terhadap-iklim-di-indonesia/.
9. Simorangkir, Hendrik (2023): Bendungan Cisadane Mengering, obtained through the internet site: https://www.metrotvnews.com/read/KvJCBxGq-bendungan-cisadane-mengering.
10. Wibawana, W.A. (2023): Apa Itu El Nino? Ini Pengertian, Dampak, dan Bedanya dengan La Nina, obtained through the internet site: https://news.detik.com/berita/d-6758231/apa-itu-el-nino-ini-pengertian-dampak-dan-bedanya-dengan-la-nina.
Photo Credits:
1. Fitri, Dera (2023): Bendungan Katulampa Kering, Air Diprioritaskan untuk Pertanian, obtained through the internet site: https://www.viva.co.id/siaran-pers/1623311-bendungan-katulampa-kering-air-diprioritaskan-untuk-pertanian.
2. IRI Columbia University (2023): What Changes in Rainfall are Typical during El Niño?, obtained through the internet site: http://iridl.ldeo.columbia.edu/maproom/IFRC/FIC/elninorain.html.
3. Sholihin, Muchamad (2022): Status Bendung Katulampa Normal Siang Ini, Tinggi Muka Air 30 cm, obtained through the internet site: https://news.detik.com/berita/d-6390499/status-bendung-katulampa-normal-siang-ini-tinggi-muka-air-30-cm.
4. Tempo (2012): Krisis Air di Banyumas Meluas, obtained through the internet site: https://nasional.tempo.co/read/427663/krisis-air-di-banyumas-meluas.
Written by:
Deviana Matudilifa Yusuf
Translated by:
Lely Lydia Rahmawati
#nuwsp #ditairminun #ciptakarya #watersupply
#elnino #perubahaniklim #climatechange #airbersih #cleanwater #airdanperubahaniklmi #waterandclimatechange #krisisair #watercrisis #cuacaekstrem #extremeweather #kekeringan #drought